14 research outputs found

    Flap Reconstruction for Esophageal Perforation Following Anterior Cervical Plate Fixation

    Get PDF
    Anterior cervical plate fixation is a common surgical treatment for cervical spine trauma, disc herniation, or cervical spondylosis. Esophageal perforation following anterior cervical plate fixation is a rare but serious complication. Management of esophageal perforation is controversial; however, we suggest treating most cases surgically because this condition is slow to heal and often fatal. We managed 2 cases of esophageal perforation following anterior cervical plate fixation by flap reconstruction with the pectoralis major muscle in one case and a jejunal free flap in the other. Here, we report our experience and review the surgical indications

    Magma Transport at Mt. Unzen Associated with the 1990-1995 Activity Inferred from Leveling Data

    No full text
    1990年11月に198年ぶりに噴火活動を開始した雲仙普賢岳は、1991年5月20目からデイサイト質溶岩を噴出し、1995年始めまで、溶岩噴出と火砕流発生を繰り返した。国立大学総合研究班および国土地理院は、雲仙普賢岳の北山麓から山頂へ向かう路線、および島原半島西岸沿いの路線に沿って水準測量を繰り返してきた。また、GPS観測も繰り返された。その結果、島原半島西部の地盤は溶岩流出まで隆起・膨張し、溶岩流出開始後沈降・収縮に転じたことがわかった。これまでの研究によって、普賢岳山頂の直下から西に向かって次第に深さを増す、3つの圧力源、A、BおよびCを仮定すれば雲仙岳周辺の地盤の変動が説明できることが示された。本研究では、水準測量データの測定誤差を考慮した上で、点力源モデルを適用して、3つの圧力源の位置、およびそれぞれの圧力源の強度の時間的変化を再計算した。その上で、溶岩噴出率および地震活動と圧力源の強度の関係、また、地盤の変形体積と溶岩噴出率をもとに地下深部からのマグマ供給率を推定した。[1]普賢岳火口の地下1.4kmに力源A、普賢岳の西方約3km、深さ4.1kmに力源B、および普賢岳西方約5km、深さ6.8kmに力源Cの存在が推定された。各力源は島原半島西方の橘湾から普賢岳に伸びる地震帯の直下に位置する。[2]溶岩噴出開始以降、普賢岳直下の力源Aの強度の変化は、溶岩噴出率と普賢岳の地震活動の増減と対応している。[3]力源Bの強度の変化は溶岩噴出率の2度の増大に対応している。一方、力源Cの強度は溶岩流出開始まで増大し、その後は時間とともに減少している。[4]以上の結果より、マグマが力源Cから、力源Bおよび力源Aを経由して輸送され、普賢岳山頂から噴出したことが推定される。地盤の変動体積の変化が力源でのマグマ蓄積量の増減に等しいと仮定して、地下深部から力源Cへのマグマ供給率を推定した。マグマ供給率は、溶岩噴出開始の約半年前から急増し、1991年終わりにヒ。一クに達し、それ以後減少して、1995年始めには停止した。1990年から1995年までのマグマ供給量は0.17km^3と推定される。The recent activity of Mt. Unzen (Fugendake) was preceded by an earthquake swarm beneath the Tachibana Bay, west of the Shimabara Peninsula, in November 1989 and the subsequent migration of seismic activity toward Mt. Unzen.On November 17, 1990, phreatic eruption started at the summit, then a dacite lava dome appeared at the summit crater on May 20, 1991. Subsequent discharge of lava and intermittent pyroclastic flows have continued until early 1995. The total volume of discharged lava was 0.2 km^3.Universities and the Geographical Survey Institute had repeated leveling survey along the western coast of the peninsula, and the other route from the northern flank to the summit, and found out significant deflation of the ground centered a few kilometer west of the summit, which was also clarified by GPS survey. The magma supply system composed of three chambers, and an inclined magma pathway along seismic zone were proposed by previous studies.Applying the Point-Source Model (Mogi's Model), the location of three pressure sources and their intensity change with time were re-examined including the evaluation of measurement error of leveling data, and the relationship between the intensity changes at pressure sources and volcanic activity.(1) The near surface source A is located at a depth of 1.4 km beneath the summit, and the source B is 4.1 km deep, 3 km west of the summit. And the deepest one C is located 6.8 km deep, west of the summit. These sources are aligned just beneath the inclined seismic zone.(2) The intensity change at A-source seems to be related to the discharge rate of lava and seismic activity at the summit.(3) The intensity change at B-source has two peaks corresponding to the two epochs of discharge of lava and increased prior to the onset of discharge of lava. The intensity of C source increased until the lava dome appeared, and then gradually decreased.(4) These results suggest magma was transported from C-source through B- and A-sources to the summit. Assuming the deformation volume of the ground surface due to pressure sources is equal to the volume change of magma at each source, the supply rate of magma from deeper portion to C-source was estimated using the data on discharge lava. The supply rate of magma increased rapidly after the phreatic eruption in November 1990, and reached its peak in the end of 1991, then decayed. In early 1995, magma supply stopped.The total volume of magma supplied since 1990 is estimated to be 0.17 km^31990年11月に198年ぶりに噴火活動を開始した雲仙普賢岳は、1991年5月20目からデイサイト質溶岩を噴出し、1995年始めまで、溶岩噴出と火砕流発生を繰り返した。国立大学総合研究班および国土地理院は、雲仙普賢岳の北山麓から山頂へ向かう路線、および島原半島西岸沿いの路線に沿って水準測量を繰り返してきた。また、GPS観測も繰り返された。その結果、島原半島西部の地盤は溶岩流出まで隆起・膨張し、溶岩流出開始後沈降・収縮に転じたことがわかった。これまでの研究によって、普賢岳山頂の直下から西に向かって次第に深さを増す、3つの圧力源、A、BおよびCを仮定すれば雲仙岳周辺の地盤の変動が説明できることが示された。本研究では、水準測量データの測定誤差を考慮した上で、点力源モデルを適用して、3つの圧力源の位置、およびそれぞれの圧力源の強度の時間的変化を再計算した。その上で、溶岩噴出率および地震活動と圧力源の強度の関係、また、地盤の変形体積と溶岩噴出率をもとに地下深部からのマグマ供給率を推定した。[1]普賢岳火口の地下1.4kmに力源A、普賢岳の西方約3km、深さ4.1kmに力源B、および普賢岳西方約5km、深さ6.8kmに力源Cの存在が推定された。各力源は島原半島西方の橘湾から普賢岳に伸びる地震帯の直下に位置する。[2]溶岩噴出開始以降、普賢岳直下の力源Aの強度の変化は、溶岩噴出率と普賢岳の地震活動の増減と対応している。[3]力源Bの強度の変化は溶岩噴出率の2度の増大に対応している。一方、力源Cの強度は溶岩流出開始まで増大し、その後は時間とともに減少している。[4]以上の結果より、マグマが力源Cから、力源Bおよび力源Aを経由して輸送され、普賢岳山頂から噴出したことが推定される。地盤の変動体積の変化が力源でのマグマ蓄積量の増減に等しいと仮定して、地下深部から力源Cへのマグマ供給率を推定した。マグマ供給率は、溶岩噴出開始の約半年前から急増し、1991年終わりにヒ。一クに達し、それ以後減少して、1995年始めには停止した。1990年から1995年までのマグマ供給量は0.17km^3と推定される。The recent activity of Mt. Unzen (Fugendake) was preceded by an earthquake swarm beneath the Tachibana Bay, west of the Shimabara Peninsula, in November 1989 and the subsequent migration of seismic activity toward Mt. Unzen.On November 17, 1990, phreatic eruption started at the summit, then a dacite lava dome appeared at the summit crater on May 20, 1991. Subsequent discharge of lava and intermittent pyroclastic flows have continued until early 1995. The total volume of discharged lava was 0.2 km^3.Universities and the Geographical Survey Institute had repeated leveling survey along the western coast of the peninsula, and the other route from the northern flank to the summit, and found out significant deflation of the ground centered a few kilometer west of the summit, which was also clarified by GPS survey. The magma supply system composed of three chambers, and an inclined magma pathway along seismic zone were proposed by previous studies.Applying the Point-Source Model (Mogi's Model), the location of three pressure sources and their intensity change with time were re-examined including the evaluation of measurement error of leveling data, and the relationship between the intensity changes at pressure sources and volcanic activity.(1) The near surface source A is located at a depth of 1.4 km beneath the summit, and the source B is 4.1 km deep, 3 km west of the summit. And the deepest one C is located 6.8 km deep, west of the summit. These sources are aligned just beneath the inclined seismic zone.(2) The intensity change at A-source seems to be related to the discharge rate of lava and seismic activity at the summit.(3) The intensity change at B-source has two peaks corresponding to the two epochs of discharge of lava and increased prior to the onset of discharge of lava. The intensity of C source increased until the lava dome appeared, and then gradually decreased.(4) These results suggest magma was transported from C-source through B- and A-sources to the summit. Assuming the deformation volume of the ground surface due to pressure sources is equal to the volume change of magma at each source, the supply rate of magma from deeper portion to C-source was estimated using the data on discharge lava. The supply rate of magma increased rapidly after the phreatic eruption in November 1990, and reached its peak in the end of 1991, then decayed. In early 1995, magma supply stopped.The total volume of magma supplied since 1990 is estimated to be 0.17 km^

    Porogen Imprinting Effects

    No full text

    Correlation of new bone metabolic markers with conventional biomarkers in hemodialysis patients

    No full text
    Background: New bone metabolic markers have become available clinically for evaluating chronic kidney disease mineral and bone disorders (CKD-MBD). The aim of this study was to correlate these new bone metabolic markers with conventional markers in regular hemodialysis (HD) patients. Methods: One hundred forty three HD patients underwent cross-sectional assessment. Two bone formation markers, bone-specific alkaline phosphatase (BAP) and osteocalcin (OC), and one bone resorption marker, amino-terminal telopeptides of type 1 collagen (NTx), were selected for study. Results: Both circulating OC and NTx levels showed positive correlations with serum intact parathyroid hormone (iPTH) levels. The levels of NTx and OC showed a strongly positive correlation, although they are known to be markers of different aspects of bone metabolism: bone formation and resorption. Patients with high iPTH (≥300pg/mL) had significantly higher levels of all the three bone markers compared with patients with low or normal iPTH . Conclusion: Serum OC and NTx levels may be useful markers of serum iPTH levels for evaluating bone turnover in HD patients and may eventually prove useful in the management of patients with CKD-MBD
    corecore