23 research outputs found

    1-Methyl-2-undecyl-4(1H)-quinolone, a derivative of quinolone alkaloid evocarpine, attenuates high phosphate-induced calcification of human aortic valve interstitial cells by inhibiting phosphate cotransporter PiT-1

    Get PDF
    AbstractAn abnormally high serum phosphate level induces calcific aortic stenosis (CAS), which is characterized by ectopic valve calcification and stenosis of the orifice area. Inhibition of ectopic calcification is a critical function of any internal medical therapy for CAS disease. The aim of the present study was to investigate the inhibitory effects of several derivatives of evocarpine, methanolic extracts from the fruits of Evodia rutaecarpa Bentham (Japanese name: Go-Shu-Yu) on the high phosphate-induced calcification of human aortic valve interstitial cells (HAVICs) obtained from patients with CAS. High phosphate (3.2 mM) concentrations significantly increased the calcification of HAVICs after 7 days of culture. This calcification was completely inhibited in the presence of sodium phosphonoformate (PFA), a selective inhibitor of the type III sodium-dependent phosphate cotransporter (PiT-1). PiT-1 contributes to phosphate uptake, resulting in calcification. 1-Methyl-2-undecyl-4(1H)-quinolone (MUQ; 30–300 nM), but not evocarpine or its derivatives dihydroevocarpine and 1-methyl-2-nonyl-4(1H)-quinolone, inhibited the high phosphate-induced HAVICs calcification in a concentration-dependent manner. Although all of the evocarpine derivatives attenuated alkaline phosphatase activity, only MUQ also decreased PiT-1 gene expression with cellular PiT-1 protein diminution. These results suggest that MUQ mitigated high phosphate-induced HAVICs calcification by inhibiting PiT-1 gene expression

    Cytosolic Sensors of Viral RNA Are Involved in the Production of Interleukin-6 via Toll-Like Receptor 3 Signaling in Human Glomerular Endothelial Cells

    Get PDF
    Background/Aims: Dysregulation of interleukin-6 (IL-6) production in residual renal cells may play a pivotal role in the development of glomerulonephritis (GN). Given that Toll-like receptor 3 (TLR3) signaling has been implicated in the pathogenesis of some forms of GN, we examined activated TLR3-mediated IL-6 signaling in cultured normal human glomerular endothelial cells (GECs). Methods: We treated GECs with polyinosinic-polycytidylic acid (poly IC), an authentic double-stranded RNA, and analyzed the expression of IL-6 and the cytosolic viral RNA sensors retinoic acid-inducible gene-I (RIG-I) and melanoma differentiation associated gene 5 (MDA5) using reverse transcription quantitative real-time polymerase chain reaction, western blotting, and enzyme-linked immunosorbent assays. To further elucidate the effects of poly IC on this signaling pathway, we subjected the cells to small interfering RNA (siRNA) against TLR3, interferon (IFN)-β, RIG-I, and MDA5. Results: We found that poly IC induced the expression of RIG-I, MDA5 and IL-6 via TLR3/IFN-β signaling in GECs. siRNA experiments revealed that both MDA5 and RIG-I were involved in the poly IC-induced expression of IL-6, with MDA5 being upstream of RIG-I. Conclusion: Interestingly, cytosolic sensors of viral RNA were found to be involved in IL-6 production via TLR3 signaling in GECs. Regional activation of TLR3/IFN-β/ MDA5/RIG-I/IL-6 axis due to viral and “pseudoviral” infections is involved in innate immunity and inflammatory reactions in GECs. We believe this signaling pathway also plays a pivotal role in the development of some forms of GN

    Cytosolic Ca 2+

    No full text

    Matrix Gla protein negatively regulates calcification of human aortic valve interstitial cells isolated from calcified aortic valves

    No full text
    Calcified aortic valve stenosis (CAS) is a common heart valve disease in elderly people, and is mostly accompanied by ectopic valve calcification. We recently demonstrated that tumor necrosis factor-α (TNF-α) induces calcification of human aortic valve interstitial cells (HAVICs) obtained from CAS patients. In this study, we investigated the role of matrix Gla protein (MGP), a known calcification inhibitor that antagonizes bone morphogenetic protein 2 (BMP2) in TNF-α-induced calcification of HAVICs. HAVICs isolated from aortic valves were cultured, and calcification was significantly induced with 30 ng/mL TNF-α. Gene expression of the calcigenic marker, BMP2, was significantly increased in response to TNF-α, while the gene and protein expression of MGP was strongly decreased. To confirm the role of MGP, MGP-knockdown HAVICs and HAVICs overexpressing MGP were generated. In HAVICs, in which MGP expression was inhibited by small interfering RNA, calcification and BMP2 gene expression were induced following long-term culture for 32 days in the absence of TNF-α. In contrast, HAVICs overexpressing MGP had significantly decreased TNF-α-induced calcification. These results suggest that MGP acts as a negative regulator of HAVIC calcification, and as such, may be helpful in the development of new therapies for ectopic calcification of the aortic valve. Keywords: Aortic valve stenosis, Human aortic valve interstitial cells, Matrix Gla protein, Aortic valve calcificatio
    corecore