14 research outputs found

    Spin singlet pairing in the superconducting state of NaxCoO2\cdot1.3H2O: evidence from a ^{59}Co Knight shift in a single crystal

    Get PDF
    We report a ^{59}Co Knight shift measurement in a single crystal of the cobalt oxide superconductor Na_{x}CoO_2\cdot1.3H_2O (T_c=4.25 K). We find that the shift due to the spin susceptibility, K^s, is substantially large and anisotropic, with the spin shift along the a-axis K^s_a being two times that along the c-axis K^s_c. The shift decreases with decreasing temperature (T) down to T\sim100 K, then becomes a constant until superconductivity sets in. Both K^s_a and K^s_c decrease below T_c. Our results indicate unambiguously that the electron pairing in the superconducting state is in the spin singlet form.Comment: 4 pages, 5 figure

    Single crystal growth of and hyperfine couplings in the spin-triplet superconductor K2_2Cr3_3As3_3

    Full text link
    We report single crystal growth of strongly-correlated compound K2_2Cr3_3As3_3 with superconducting temperature TcT_{\textrm c}=6.2 K, and the measurements of magnetic susceptibility χ\chi above TcT_{\textrm c}. We determined the hyperfine coupling constants directly from the relation between the Knight shift (KK) and susceptibility (KK-χ\chi plot) and obtained the orbital contribution KorbK_{\textrm{orb}}. Our results of KorbK_{\textrm{orb}} is in fairly good agreement with the previous estimate using a novel method, and reinforce the conclusion that K2_2Cr3_3As3_3 is a spin-triplet superconductor

    Na content dependence of superconductivity and the spin correlations in Na_{x}CoO_{2}\cdot 1.3H_{2}O

    Full text link
    We report systematic measurements using the ^{59}Co nuclear quadrupole resonance(NQR) technique on the cobalt oxide superconductors Na_{x}CoO_{2}\cdot 1.3H_{2}O over a wide Na content range x=0.25\sim 0.34. We find that T_c increases with decreasing x but reaches to a plateau for x \leq0.28. In the sample with x \sim 0.26, the spin-lattice relaxation rate 1/T_1 shows a T^3 variation below T_c and down to T\sim T_c/6, which unambiguously indicates the presence of line nodes in the superconducting (SC) gap function. However, for larger or smaller x, 1/T_1 deviates from the T^3 variation below T\sim 2 K even though the T_c (\sim 4.7 K) is similar, which suggests an unusual evolution of the SC state. In the normal state, the spin correlations at a finite wave vector become stronger upon decreasing x, and the density of states at the Fermi level increases with decreasing x, which can be understood in terms of a single-orbital picture suggested on the basis of LDA calculation.Comment: version published in J. Phys. Condens. Matter (references updated and more added

    Spin-singlet superconductivity in the doped topological crystalline insulator Sn0.96In0.04Te

    Get PDF
    The In-doped topological crystalline insulator Sn1−x InxTe is a candidate for a topological superconductor, where a pseudo-spin-triplet state has been proposed. To clarify the spin symmetry of Sn1−x InxTe, we perform 125Te-nuclear magnetic resonance (NMR) measurements in polycrystalline samples with 0 x 0.15. The penetration depth calculated from the NMR line width is T independent below half the superconducting transition temperature (Tc) in polycrystalline Sn0.96In0.04Te, which indicates a fully opened superconducting gap. In this sample, the spin susceptibility measured by the spin Knight shift (Ks) at an external magnetic field of μ0H0 = 0.0872 T decreases below Tc, and Ks(T = 0)/Ks(T = Tc) reaches 0.36 ± 0.10, which is far below the limiting value 2/3 expected for a spin-triplet state for a cubic crystal structure. Our result indicates that polycrystalline Sn0.96In0.04Te is a spin-singlet superconductor

    Localized-to-itinerant transition preceding antiferromagnetic quantum critical point and gapless superconductivity in CeRh0.5Ir0.5In5

    Get PDF
    A fundamental problem posed from the study of correlated electron compounds, of which heavy-fermion systems are prototypes, is the need to understand the physics of states near a quantum critical point (QCP). At a QCP, magnetic order is suppressed continuously to zero temperature and unconventional superconductivity often appears. Here, we report pressure T-c. (P)-dependent In-115 nuclear quadrupole resonance (NQR) measurements on heavy-fermion antiferromagnet CeRh0.5Ir0.5In5. These experiments reveal an antiferromagnetic (AF) QCP at P-c(AF) = 1.2 GPa where a dome of superconductivity reaches a maximum transition temperature Tc. Preceding P-c(AF), however, the NQR frequency nu(Q) undergoes an abrupt increase at P-c* = 0.8 GPa in the zero-temperature limit, indicating a change from localized to itinerant character of cerium's f-electron and associated small-to-large change in the Fermi surface. At P-c(AF) where T-c is optimized, there is an unusually large fraction of gapless excitations well below T-c that implicates spin-singlet, odd-frequency pairing symmetry

    Spin singlet pairing in the superconducting state of NaxCo02 1.3H2O: evidence from a 59Co Knight shift in a single crystal

    Get PDF
    We report a 59Co Knight-shift measurement in a single crystal of the cobalt oxide superconductor NaxCoO2∙1.3H2O (Tc=4.25 K). We find that the shift due to the spin susceptibility, Ks, is substantially large and anisotropic, with the spin shift along the a-axis Kas being two times that along the c-axis Kcs. The shift decreases with decreasing temperature (T) down to T≈100 K, then becomes a constant until superconductivity sets in. Both Kas and Kcs decrease below Tc. Our results indicate unambiguously that the electron pairing in the superconducting state is in the spin singlet form
    corecore