123 research outputs found

    Retinal Pigment Epithelium and Müller Progenitor Cell Interaction Increase Müller Progenitor Cell Expression of PDGFRα and Ability to Induce Proliferative Vitreoretinopathy in a Rabbit Model

    Get PDF
    Purpose. Proliferative vitreoretinopathy (PVR) is a complication of retinal detachment characterized by redetachment of the retina as a result of membrane formation and contraction. A variety of retinal cells, including retinal pigment epithelial (RPE) and Müller glia, and growth factors may be responsible. Platelet-derived growth factor receptor alpha (PDGFRα) is found in large quantities in PVR membranes, and is intrinsic to the development of PVR in rabbit models. This study explores the expression of PDGFR in cocultures of RPE and Müller cells over time to examine how these two cell types may collaborate in the development of PVR. We also examine how changes in PDGFRα expression alter Müller cell pathogenicity. Methods. Human MIO-M1 Müller progenitor (MPC) and ARPE19 cells were studied in a transmembrane coculture system. Immunocytochemistry and Western blot were used to look at PDGFRα, PDGFRβ, and GFAP expression. A transfected MPC line cell line expressing the PDGFRα (MIO-M1α) was generated, and tested in a rabbit model for its ability to induce PVR. Results:. The expression of PDGFRα and PDGFRβ was upregulated in MIO-M1 MPCs cocultured with ARPE19 cells; GFAP was slightly decreased. Increased expression of PDGFRα in the MIO-M1 cell line resulted in increased pathogenicity and enhanced ability to induce PVR in a rabbit model. Conclusions:. Müller and RPE cell interaction can lead to upregulation of PDGFRα and increased Müller cell pathogenicity. Müller cells may play a more active role than previously thought in the development of PVR membranes, particularly when stimulated by an RPE-cell-rich environment. Additional studies of human samples and in animal models are warranted

    Profilin-1 Is Expressed in Human Atherosclerotic Plaques and Induces Atherogenic Effects on Vascular Smooth Muscle Cells

    Get PDF
    .Here we monitored profilin-1 expression in human atherosclerotic plaques by immunofluorescent staining. The effects of recombinant profilin-1 on atherogenic signaling pathways and cellular responses such as DNA synthesis (BrdU-incorporation) and chemotaxis (modified Boyden-chamber) were evaluated in cultured rat aortic and human coronary vascular smooth muscle cells (VSMCs). Furthermore, the correlation between profilin-1 serum levels and the degree of atherosclerosis was assessed in humans.<0.001 vs. no atherosclerosis or control group).Profilin-1 expression is significantly enhanced in human atherosclerotic plaques compared to the normal vessel wall, and the serum levels of profilin-1 correlate with the degree of atherosclerosis in humans. The atherogenic effects exerted by profilin-1 on VSMCs suggest an auto-/paracrine role within the plaque. These data indicate that profilin-1 might critically contribute to atherogenesis and may represent a novel therapeutic target

    ER Stress-Induced Aggresome Trafficking of HtrA1 Protects Against 1! Proteotoxicity

    Get PDF
    High temperature requirement A1 (HtrA1) belongs to an ancient protein family that is linked to various human disorders. The precise role of exon 1-encoded N-terminal domains and how these influence the biological functions of human HtrA1 remain elusive. In this study, we traced the evolutionary origins of these N-terminal domains to a single gene fusion event in the most recent common ancestor of vertebrates. We hypothesized that human HtrA1 is implicated in unfolded protein response. In highly secretory cells of the retinal pigmented epithelia, endoplasmic reticulum (ER) stress upregulated HtrA1. HtrA1 co-localized with vimentin intermediate filaments in highly arborized fashion. Upon ER stress, HtrA1 tracked along intermediate filaments, which collapsed and bundled in an aggresome at the microtubule organizing center. Gene silencing of HtrA1 altered the schedule and amplitude of adaptive signaling and concomitantly resulted in apoptosis. Restoration of wild-type HtrA1, but not its protease inactive mutant, was necessary and sufficient to protect from apoptosis. A variant of HtrA1 that harbored exon 1 substitutions displayed reduced efficacy in rescuing cells from proteotoxicity. Our results illuminate the integration of HtrA1 in the toolkit of mammalian cells against protein misfolding and the implications of defects in HtrA1 in proteostasis

    Cambogin Is Preferentially Cytotoxic to Cells Expressing PDGFR

    Get PDF
    Platelet-derived growth factor receptors (PDGFRs) have been implicated in a wide array of human malignancies, including medulloblastoma (MB), the most common brain tumor of childhood. Although significant progress in MB biology and therapeutics has been achieved during the past decades, MB remains a horrible challenge to the physicians and researchers. Therefore, novel inhibitors targeting PDGFR signaling pathway may offer great promise for the treatment of MB. In the present study, we investigated the cytotoxicity and mechanisms of cambogin in Daoy MB cells. Our results show that cambogin triggers significant S phase cell cycle arrest and apoptosis via down regulation of cyclin A and E, and activation of caspases. More importantly, further mechanistic studies demonstrated that cambogin inhibits PDGFR signaling in Daoy and genetically defined mouse embryo fibroblast (MEF) cell lines. These results suggest that cambogin is preferentially cytotoxic to cells expressing PDGFR. Our findings may provide a novel approach by targeting PDGFR signaling against MB
    corecore