126 research outputs found

    Aerosol nucleation over oceans and the role of galactic cosmic rays

    Get PDF
    International audienceWe investigate formation of sulfate aerosol in the marine troposphere from neutral and charged nucleation of H2SO4 and H2O. A box model of neutral and charged aerosol processes is run on a grid covering the oceans. Input data are taken from a model of galactic cosmic rays in the atmosphere, and from global chemistry and transport models. We find a weak aerosol production over the tropical oceans in the lower and middle troposphere, and a stronger production at higher latitudes, most notably downwind of industrial regions. The highest aerosol production, however, occurs in the upper troposphere, in particular in the tropics. This finding supports the proposition by which non-sea salt marine boundary layer aerosol in tropical regions does not form in situ, but nucleates in the upper troposphere from convectively lifted and cloud processed boundary layer air rich in aerosol precursor gases, from where it descends in subsiding air masses compensating convection. Convection of boundary layer air also appears to drive the formation of condensation nuclei in the tropical upper troposphere which maintains the stratospheric aerosol layer in the absence of volcanic activity. Neutral nucleation contributes only marginally to aerosol production in our simulations. This highlights the importance of charged binary and of ternary nucleation involving ammonia for aerosol formation. In clean marine regions however, ammonia concentrations seem too low to support ternary nucleation, making binary nucleation from ions a likely pathway for sulfate aerosol formation. On the other hand, our analysis indicates that the variation of ionization by galactic cosmic rays over the decadal solar cycle does not entail a response in aerosol production and cloud cover via the second indirect aerosol effect that would explain observed variations in global cloud cover. We estimate that the variation in radiative forcing resulting from a response of clouds to the change in galactic cosmic ray ionization and subsequent aerosol production over the decadal solar cycle is smaller than the concurrent variation of total solar irradiance

    Is aerosol formation in cirrus clouds possible?

    No full text
    International audienceThe recent observation of ultrafine aerosol particles in cirrus clouds has raised the question whether aerosol formation within cirrus clouds is possible, and if so, what mechanisms are involved. We have developed an aerosol parcel model of neutral and charged H2SO4/H2O aerosol processes, including nucleation from the gas phase and loss onto cirrus ice particles. Laboratory thermodynamic data for sulfuric acid uptake and loss by small neutral and charged clusters are used, allowing for a reliable description of both neutral and charged nucleation down to the very low temperatures occurring in the upper troposphere and lower stratosphere. The model implements a first order scheme for resolving the aerosol size distribution within its geometric size sections, which efficiently suppresses numerical diffusion. We operate the model offline on trajectories generated with a detailed 1-D cirrus model which describes ice crystal nucleation, deposition growth, vertical advection of ice crystals and water vapor, and ice crystal sedimentation. In this paper we explore the possibility of aerosol formation within non-convective cirrus clouds and draw conclusions for aerosol formation in anvil cirrus. We find that sulfate aerosol formation within cirrus clouds can proceed even at high ice surface area concentrations, and depends strongly on the size of the cirrus ice crystals and on the surface area concentration of preexisting aerosol particles

    A semi-analytical method for calculating rates of new sulfate aerosol formation from the gas phase

    Get PDF
    International audienceThe formation of new aerosol from the gas phase is commonly represented in atmospheric modeling with parameterizations of the steady state nucleation rate. Present parameterizations are based on classical nucleation theory or on nucleation rates calculated with a numerical aerosol model. These parameterizations reproduce aerosol nucleation rates calculated with a numerical aerosol model only imprecisely. Additional errors can arise when the nucleation rate is used as a surrogate for the production rate of particles of a given size. We discuss these errors and present a method which allows a more precise calculation of steady state sulfate aerosol formation rates. The method is based on the semi-analytical solution of an aerosol system in steady state and on parameterized rate coefficients for H2SO4 uptake and loss by sulfate aerosol particles, calculated from laboratory and theoretical thermodynamic data

    Temperature dependence of the rates of reaction of trifluoroacetic acid with Criegee intermediates

    Get PDF
    The rate coefficients for gas-phase reaction of trifluoroacetic acid (TFA) with two Criegee intermediates, formaldehyde oxide and acetone oxide, decrease with increasing temperature in the range 240–340 K. The rate coefficients k(CH2OO + CF3COOH)=(3.4±0.3)×10−10 cm3 s−1 and k((CH3)2COO + CF3COOH)=(6.1±0.2)×10−10 cm3 s−1 at 294 K exceed estimates for collision-limited values, suggesting rate enhancement by capture mechanisms because of the large permanent dipole moments of the two reactants. The observed temperature dependence is attributed to competitive stabilization of a pre-reactive complex. Fits to a model incorporating this complex formation give k [cm3 s−1]=(3.8±2.6)×10−18 T2 exp((1620±180)/T) + 2.5×10−10 and k [cm3 s−1]=(4.9±4.1)×10−18 T2 exp((1620±230)/T) + 5.2×10−10 for the CH2OO + CF3COOH and (CH3)2COO + CF3COOH reactions, respectively. The consequences are explored for removal of TFA from the atmosphere by reaction with biogenic Criegee intermediates
    • 

    corecore