7 research outputs found

    Mathematical modelling of the dynamics of image-informed tumor habitats in a murine model of glioma

    No full text
    Abstract Tumors exhibit high molecular, phenotypic, and physiological heterogeneity. In this effort, we employ quantitative magnetic resonance imaging (MRI) data to capture this heterogeneity through imaging-based subregions or “habitats” in a murine model of glioma. We then demonstrate the ability to model and predict the growth of the habitats using coupled ordinary differential equations (ODEs) in the presence and absence of radiotherapy. Female Wistar rats (N = 21) were inoculated intracranially with 106 C6 glioma cells, a subset of which received 20 Gy (N = 5) or 40 Gy (N = 8) of radiation. All rats underwent diffusion-weighted and dynamic contrast-enhanced MRI at up to seven time points. All MRI data at each visit were subsequently clustered using k-means to identify physiological tumor habitats. A family of four models consisting of three coupled ODEs were developed and calibrated to the habitat time series of control and treated rats and evaluated for predictive capability. The Akaike Information Criterion was used for model selection, and the normalized sum-of-square-error (SSE) was used to evaluate goodness-of-fit in model calibration and prediction. Three tumor habitats with significantly different imaging data characteristics (p < 0.05) were identified: high-vascularity high-cellularity, low-vascularity high-cellularity, and low-vascularity low-cellularity. Model selection resulted in a five-parameter model whose predictions of habitat dynamics yielded SSEs that were similar to the SSEs from the calibrated model. It is thus feasible to mathematically describe habitat dynamics in a preclinical model of glioma using biology-based ODEs, showing promise for forecasting heterogeneous tumor behavior

    Quantifying Tumor Heterogeneity via MRI Habitats to Characterize Microenvironmental Alterations in HER2+ Breast Cancer

    No full text
    This study identifies physiological habitats using quantitative magnetic resonance imaging (MRI) to elucidate intertumoral differences and characterize microenvironmental response to targeted and cytotoxic therapy. BT-474 human epidermal growth factor receptor 2 (HER2+) breast tumors were imaged before and during treatment (trastuzumab, paclitaxel) with diffusion-weighted MRI and dynamic contrast-enhanced MRI to measure tumor cellularity and vascularity, respectively. Tumors were stained for anti-CD31, anti-ɑSMA, anti-CD45, anti-F4/80, anti-pimonidazole, and H&E. MRI data was clustered to identify and label each habitat in terms of vascularity and cellularity. Pre-treatment habitat composition was used stratify tumors into two “tumor imaging phenotypes” (Type 1, Type 2). Type 1 tumors showed significantly higher percent tumor volume of the high-vascularity high-cellularity (HV-HC) habitat compared to Type 2 tumors, and significantly lower volume of low-vascularity high-cellularity (LV-HC) and low-vascularity low-cellularity (LV-LC) habitats. Tumor phenotypes showed significant differences in treatment response, in both changes in tumor volume and physiological composition. Significant positive correlations were found between histological stains and tumor habitats. These findings suggest that the differential baseline imaging phenotypes can predict response to therapy. Specifically, the Type 1 phenotype indicates increased sensitivity to targeted or cytotoxic therapy compared to Type 2 tumors

    Quantifying Tumor Heterogeneity via MRI Habitats to Characterize Microenvironmental Alterations in HER2+ Breast Cancer

    No full text
    This study identifies physiological habitats using quantitative magnetic resonance imaging (MRI) to elucidate intertumoral differences and characterize microenvironmental response to targeted and cytotoxic therapy. BT-474 human epidermal growth factor receptor 2 (HER2+) breast tumors were imaged before and during treatment (trastuzumab, paclitaxel) with diffusion-weighted MRI and dynamic contrast-enhanced MRI to measure tumor cellularity and vascularity, respectively. Tumors were stained for anti-CD31, anti-&#593;SMA, anti-CD45, anti-F4/80, anti-pimonidazole, and H&amp;E. MRI data was clustered to identify and label each habitat in terms of vascularity and cellularity. Pre-treatment habitat composition was used stratify tumors into two &ldquo;tumor imaging phenotypes&rdquo; (Type 1, Type 2). Type 1 tumors showed significantly higher percent tumor volume of the high-vascularity high-cellularity (HV-HC) habitat compared to Type 2 tumors, and significantly lower volume of low-vascularity high-cellularity (LV-HC) and low-vascularity low-cellularity (LV-LC) habitats. Tumor phenotypes showed significant differences in treatment response, in both changes in tumor volume and physiological composition. Significant positive correlations were found between histological stains and tumor habitats. These findings suggest that the differential baseline imaging phenotypes can predict response to therapy. Specifically, the Type 1 phenotype indicates increased sensitivity to targeted or cytotoxic therapy compared to Type 2 tumors

    The ISMRM Open Science Initiative for Perfusion Imaging (OSIPI): Results from the OSIPI-Dynamic Contrast-Enhanced challenge

    No full text
    PURPOSE: has often been proposed as a quantitative imaging biomarker for diagnosis, prognosis, and treatment response assessment for various tumors. None of the many software tools for quantification are standardized. The ISMRM Open Science Initiative for Perfusion Imaging-Dynamic Contrast-Enhanced (OSIPI-DCE) challenge was designed to benchmark methods to better help the efforts to standardize measurement. METHODS: A framework was created to evaluate values produced by DCE-MRI analysis pipelines to enable benchmarking. The perfusion MRI community was invited to apply their pipelines for quantification in glioblastoma from clinical and synthetic patients. Submissions were required to include the entrants\u27 values, the applied software, and a standard operating procedure. These were evaluated using the proposed score defined with accuracy, repeatability, and reproducibility components. RESULTS: Across the 10 received submissions, the score ranged from 28% to 78% with a 59% median. The accuracy, repeatability, and reproducibility scores ranged from 0.54 to 0.92, 0.64 to 0.86, and 0.65 to 1.00, respectively (0-1 = lowest-highest). Manual arterial input function selection markedly affected the reproducibility and showed greater variability in analysis than automated methods. Furthermore, provision of a detailed standard operating procedure was critical for higher reproducibility. CONCLUSIONS: This study reports results from the OSIPI-DCE challenge and highlights the high inter-software variability within estimation, providing a framework for ongoing benchmarking against the scores presented. Through this challenge, the participating teams were ranked based on the performance of their software tools in the particular setting of this challenge. In a real-world clinical setting, many of these tools may perform differently with different benchmarking methodology

    The ISMRM Open Science Initiative for Perfusion Imaging (OSIPI):Results from the OSIPI-Dynamic Contrast-Enhanced challenge

    No full text
    Purpose: (Formula presented.) has often been proposed as a quantitative imaging biomarker for diagnosis, prognosis, and treatment response assessment for various tumors. None of the many software tools for (Formula presented.) quantification are standardized. The ISMRM Open Science Initiative for Perfusion Imaging–Dynamic Contrast-Enhanced (OSIPI-DCE) challenge was designed to benchmark methods to better help the efforts to standardize (Formula presented.) measurement. Methods: A framework was created to evaluate (Formula presented.) values produced by DCE-MRI analysis pipelines to enable benchmarking. The perfusion MRI community was invited to apply their pipelines for (Formula presented.) quantification in glioblastoma from clinical and synthetic patients. Submissions were required to include the entrants' (Formula presented.) values, the applied software, and a standard operating procedure. These were evaluated using the proposed (Formula presented.) score defined with accuracy, repeatability, and reproducibility components. Results: Across the 10 received submissions, the (Formula presented.) score ranged from 28% to 78% with a 59% median. The accuracy, repeatability, and reproducibility scores ranged from 0.54 to 0.92, 0.64 to 0.86, and 0.65 to 1.00, respectively (0–1 = lowest–highest). Manual arterial input function selection markedly affected the reproducibility and showed greater variability in (Formula presented.) analysis than automated methods. Furthermore, provision of a detailed standard operating procedure was critical for higher reproducibility. Conclusions: This study reports results from the OSIPI-DCE challenge and highlights the high inter-software variability within (Formula presented.) estimation, providing a framework for ongoing benchmarking against the scores presented. Through this challenge, the participating teams were ranked based on the performance of their software tools in the particular setting of this challenge. In a real-world clinical setting, many of these tools may perform differently with different benchmarking methodology.</p

    The ISMRM Open Science Initiative for Perfusion Imaging (OSIPI): Results from the OSIPI-Dynamic Contrast-Enhanced challenge

    No full text
    purpose: KtransKtrans {K}^{\mathrm{trans}} has often been proposed as a quantitative imaging biomarker for diagnosis, prognosis, and treatment response assessment for various tumors. None of the many software tools for KtransKtrans {K}^{\mathrm{trans}} quantification are standardized. the ISMRM open science initiative for perfusion imaging-dynamic contrast-enhanced (OSIPI-DCE) challenge was designed to benchmark methods to better help the efforts to standardize KtransKtrans {K}^{\mathrm{trans}} measurement. methods: a framework was created to evaluate KtransKtrans {K}^{\mathrm{trans}} values produced by DCE-MRI analysis pipelines to enable benchmarking. the perfusion MRI community was invited to apply their pipelines for KtransKtrans {K}^{\mathrm{trans}} quantification in glioblastoma from clinical and synthetic patients. submissions were required to include the entrants' KtransKtrans {K}^{\mathrm{trans}} values, the applied software, and a standard operating procedure. These were evaluated using the proposed OSIPIgoldOSIPIgold \mathrm{OSIP}{\mathrm{I}}_{\mathrm{gold}} score defined with accuracy, repeatability, and reproducibility components. results: across the 10 received submissions, the OSIPIgoldOSIPIgold \mathrm{OSIP}{\mathrm{I}}_{\mathrm{gold}} score ranged from 28% to 78% with a 59% median. The accuracy, repeatability, and reproducibility scores ranged from 0.54 to 0.92, 0.64 to 0.86, and 0.65 to 1.00, respectively (0-1 = lowest-highest). manual arterial input function selection markedly affected the reproducibility and showed greater variability in KtransKtrans {K}^{\mathrm{trans}} analysis than automated methods. furthermore, provision of a detailed standard operating procedure was critical for higher reproducibility. conclusions: This study reports results from the OSIPI-DCE challenge and highlights the high inter-software variability within KtransKtrans {K}^{\mathrm{trans}} estimation, providing a framework for ongoing benchmarking against the scores presented. through this challenge, the participating teams were ranked based on the performance of their software tools in the particular setting of this challenge. In a real-world clinical setting, many of these tools may perform differently with different benchmarking methodology
    corecore