14 research outputs found

    Effect of chitosan coating incorporated with artemisia fragrans essential oil on fresh chicken meat during refrigerated storage

    Get PDF
    The present study was conducted to assess the impact of chitosan coating (1%) containing Artemisia fragrans essential oil (500, 1000, and 1500 ppm) as antioxidant and antimicrobial agent on the quality properties and shelf life of chicken fillets during refrigerated storage. After packaging meat samples, physicochemical, microbiological, and organoleptic attributes were evaluated at 0, 3, 6, 9, and 12 days at 4 °C. The results revealed that applied chitosan (CH) coating in combination with Artemisia fragrans essential oils (AFEOs) had no significant (p < 0.05) effects on proximate composition among treatments. The results showed that the incorporation of AFEOs into CH coating significantly reduced (p < 0.05) pH, thiobarbituric acid reactive substances (TBARS), and total volatile base nitrogen (TVB-N), especially for 1% CH coating + 1500 ppm AFEOs, with values at the end of storage of 5.58, 1.61, and 2.53, respectively. The coated samples also displayed higher phenolic compounds than those obtained by uncoated samples. Coated chicken meat had, significantly (p < 0.05), the highest inhibitory effects against microbial growth. The counts of TVC (total viable counts), coliforms, molds, and yeasts were significantly lower (p < 0.05) in 1% CH coating + 1500 ppm AFEOs fillets (5.32, 3.87, and 4.27 Log CFU/g, respectively) at day 12. Organoleptic attributes of coated samples also showed the highest overall acceptability scores than uncoated ones. Therefore, the incorporation of AFEOs into CH coating could be effectively used for improving stability and shelf life of chicken fillets during refrigerated storage.Axencia Galega de Innovación | Ref. IN607A2019 / 01CYTED | Ref. 119RT056

    Assessment of dietary selenium and vitamin E on laying performance and quality parameters of fresh and stored eggs in Japanese quails

    Get PDF
    The effect of dietary supplementation with VE and Se on the laying productive performance, immunity, and the quality parameters of fresh and stored eggs was assessed. For this study, five treatments, namely control (basal diet), control plus 30 mg of VE and 0.4 mg kg−1 sodium selenite (VE30SS), control plus 30 mg of VE and 0.4 mg kg−1 of Sel-Plex® (VE30SP), control plus 120 mg VE and 0.4 mg kg−1 Sodium selenite (VE120SS), and control plus 120 mg VE and 0.4 mg kg−1 Sel-Plex (VE120SP), were examined. There was no huge impact of VE and Se on feed consumption, FCR and egg yield rate. Quality parameters of fresh egg including egg surface area, eggshell thickness, yolk selenium concentration, albumen height, and Haugh unit were significantly increased following VE and Se supplementation (p < 0.05). For stored eggs, VE and Se significantly increased egg yolk color intensity (p < 0.05). Regardless of storage temperature, eggs from birds fed with VE and Se had less weight loss during 30 days of storage. Albumen height was significantly higher in VE and Se fed birds in eggs stored at 5 °C for 15 and 30 days. The combination of Sel-Plex with either levels of VE had significantly higher blood total antioxidant capacity. Dietary VE and Selenium, notably Sel-Plex, improved the antioxidant potential of blood and egg quality of laying quails.Axencia Galega de Innovación | Ref. IN607A2019/0

    Improving the quality characteristics and shelf life of meat and growth performance in goose fed diets supplemented with vitamin E

    Get PDF
    The present study was carried out to investigate the effect of dietary vitamin E on growth performance, cellular immunity, carcass characteristics, and meat quality in geese. Sixty-four one-day-old male geese were selected from 1200 goose chicks with the same average body weight (92.5 ± 2.5 g) and subjected to two treatments (basal diet or control and basal diet plus 120 mg/kg vitamin E supplement) with 4 replicates (8 geese per replicate) for 8 weeks. After slaughter, goose meat was aerobically packed in polyethylene packages and stored at 4 °C for 9 days. The results showed that vitamin E supplementation improved the growth performance, carcass yield percentage, and immune response of goose (p < 0.05). The addition of vitamin E in the diet significantly increased the protein and fat content of goose meat but decreased the moisture and ash content with respect to those obtained from the control diet. During storage, meat from the vitamin E treatment showed higher phenolic content and lower thiobarbituric acid reactive substances (TBARSs) and total volatile nitrogen (TVB-N) values than those from the control treatment. Vitamin E supplementation increased the saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs), and polyunsaturated fatty acids (PUFAs) in goose meat. However, goose meat supplemented with vitamin E displayed a significantly (p < 0.05) higher PUFA/SFA ratio than those of the control group. Based on the results, it was concluded that vitamin E could be used to improve the growth performance of goose, the meat composition in terms of the protein and fat content, the nutritional value in terms of the fatty acid composition, and the shelf life.Axencia Galega de Innovación | Ref. IN607A2019/01CYTED | Ref. 119RT056

    Impact of Ginger Root Powder Dietary Supplement on Productive Performance, Egg Quality, Antioxidant Status and Blood Parameters in Laying Japanese Quails

    No full text
    Medicinal plants with antibacterial effects have been used by humans for centuries. In the recent decade, due to the development of antibiotic resistant strains, many studies have focused on the use of natural compounds as feed additives in livestock. Ginger, among all, have repetitively shown numerous biological activities, antibacterial, and antibiotic properties. This study was conducted to evaluate the effects of ginger root powder (GP) on the performance, egg quality, and blood parameters of Japanese quail. A total of 240 10-weeks old female quails were used in a completely randomized design with 4 treatments, 4 replicates, and 15 birds per replicate. Dietary treatment were basal diet (control) and basal diet containing 0.5, 1, and 1.5 g/kg of ginger root powder. Growth performance and exterior and interior quality of egg were measured biweekly over eight-week period. At the end of experiment blood parameters were evaluated. The results showed that diet supplementation with different levels of GP had no significant effect on egg production, egg mass weight, and egg weight (p &gt; 0.05). However, feed intake and feed conversion ratio were significantly lower in the treatment group than the control in the whole period (p &lt; 0.05). Egg Quality traits (shape index, albumen index, the percentage of albumen, yolk and shell, yolk pH, and shell thickness and strength) were not affected by the supplements in the whole trial period. Addition of GP significantly increased the albumen height, Haugh unit, and albumen pH in comparison with the control treatment (p &lt; 0.05). GP reduced blood triglyceride level yet was ineffective on blood total antioxidant capacity and malondialdehyde. In conclusion, dietary supplementation with GP, could improve productive performance and the egg quality of Japanese quails. Nonetheless a comprehensive study needs to be performed in order to evaluate the impact of quail dietary ginger supplementation on productive performance and egg quality and their stability during storage time for commercial use

    Effect of Aloysia citrodora essential oil on biochemicals, antioxidant characteristics, and shelf life of strawberry fruit during storage

    Get PDF
    Strawberry fruits are highly susceptible to cold burning, resulting in low storage periods at low temperatures. Plant extracts or essential oils (EOs) can potentially be used as preservatives in fruits throughout the refrigerated period. In the present study, the biochemicals, antioxidant characteristics, and shelf life of treated strawberries with Aloysia citrodora essential oil (ACEOs) were evaluated during keeping time. The treatments were produced as follows: T1, control; T2, 250 ppm ACEOs; T3, 500 ppm ACEOs; and T4, 750 ppm ACEOs. Total soluble solids (TSS), weight loss, titratable acidity (TA), antioxidant activity (DPPH assay), total phenolic (TPC), flavonoid and anthocyanin contents (TFC), and enzymes activity (peroxidase and ascorbate peroxidase) were evaluated during the refrigerated period (5 °C with relative humidity of 85–90% for 20 days). The results revealed that weight loss and TA were reduced in all treatments during storage, being that the rates were lower in samples treated with ACEOs. TPC, TFC, TSS, antioxidant, and enzymes activity were higher in treated fruits than control

    Production and characterization of nondairy gluten-free fermented beverage based on buckwheat and lentil

    No full text
    The present study aimed to optimize the formulation of buckwheat/lentil gluten-free beverages fermented with Lactobacillus plantarum and Bifidobacterium bifidum. Physicochemical parameters of 14 different beverages, such as pH, acidity, total solids, ash, total phenol content, antioxidant activity, and sensory test, were assessed after 24 h of fermentation. The results showed that the numbers of viable cells of lactobacilli and bifidobacteria on the first day of the experiment were 9.9 and 9.6 log (CFU ml−1), respectively, which were over 9 log (CFU ml−1). During 24 h from the fermentation, the number of viable cells for all beverages decreased, which reached an average probiotic count of 8.81 log (CFU ml−1) that was statistically significantly different from the probiotic count before fermentation (p &lt; .05). Cell viability was evaluated and shelf life was estimated during 15-day refrigerated storage. At the end of the storage (15th day), the beverages contained an average of 8.4 log (CFU ml−1) of live lactobacilli cells and 7.8 log (CFU ml−1) of viable bifidobacterial cells. The optimized levels of independent factors for sprouted buckwheat and lentil flours were 51.96% and 48.04%, respectively. The optimized probiotic beverage was contained 0.25 (% lactic acid) acidity, 5.7 pH, 7.9% total solids, 0.4% ash, 41.02% DPPH, 26.96 (mg GAE/ml) phenol compounds, and 8.65 log (CFU ml−1) probiotic count. The optimized beverage had distinct organoleptic properties on day 15 of refrigerated storage. This study showed that Bifidobacterium bifidum can be used for the development of potentially probiotic beverage with sprouted buckwheat and lentil

    Effect of pasteurization and ripening temperature on chemical and sensory characteristics of traditional Motal cheese

    Get PDF
    The appropriate physicochemical and sensory characteristics and the traditional elaboration process of Motal cheese resulted in a high consumer acceptability. However, different process steps could have a significant effect on these characteristics. Thus, the present study aimed to investigate the effects of pasteurization, ripening time, and ripening temperature (6 °C and 12 °C) on the physicochemical properties, sensory characteristics, and proteolysis and lipolysis phenomenon of traditional Motal cheese. The cheeses were evaluated each 15 days during 3 months of ripening process. The results showed that pasteurization and ripening temperature had a significant effect on pH, acidity, dry matter, fat, protein, and salt (p < 0.05), which were higher in pasteurized cheeses ripened at higher temperature (12 °C). Moreover, the content of these parameters increased as ripening progressed. Proteolysis and lipolysis intensity were higher in the cheeses elaborated form raw milk and ripened at 12 °C (R12), mainly due to the higher activity of enzymes and/or bacteria. As a general conclusion, the pasteurization and low-temperature ripening process allows us to have a homogeneous product and ensure the microbiological stability of the cheeses, as well as presents higher physicochemical qualities than those obtained from raw milk.Axencia Galega de Innovación | Ref. IN607A2019/0

    The Effect of Dietary Supplementation with Inorganic or Organic Selenium on the Nutritional Quality and Shelf Life of Goose Meat and Liver

    No full text
    Ninety-six male goslings were allocated and assigned to treatment using a completely randomized design. Dietary treatments included a basal diet consisting of corn, wheat, and soybean meal with either no additional selenium (CON), 0.3 mg/kg of inorganic selenium (I-Se; sodium selenite), or 0.3 mg/kg of organic selenium (O-Se; selenium-enriched yeast). After a 56-day feeding period, geese were slaughtered on a common ending day and two geese per pen (n = 24) were used for the analyses conducted in this study. Meat (equal portions of the breast and thigh meat) and liver were collected and evaluated for proximate composition, fatty acid profile, pH, phenolic content, thiobarbituric acid reactive substances (TBARS), and total volatile basic nitrogen (TVB-N) over a 9-day storage period at 4 °C. The meat and liver samples from geese supplemented I-Se or O-Se had greater (p p p p p < 0.05) TVB-N compared with geese not supplemented with additional selenium (CON)

    Physicochemical Characteristics of Pork Liver Pâtés Containing Nonthermal Air Plasma-Treated Egg White as an Alternative Source of Nitrite

    No full text
    The use of nonthermal air plasma is rapidly becoming a novel technology as an alternative source of nitrites in the meat industry. As egg white is a versatile and cost-effective ingredient commonly used to improve the texture of meat products, the effect of its addition after plasma treatment (PTEW) on the yield, pH, residual nitrite, nitrosyl hemochrome, TBARS, color, texture parameters, and aroma profile of pork liver pâtés was studied. The nitrite ion content of plasma-activated egg whites was adjusted to the positive controls containing 60 ppm (PC1) and 120 ppm (PC2) sodium nitrite by modifying the duration of their plasma treatment (PTEW1 and PTEW2, respectively). A group without the addition of nitrites was also manufactured (NC). Each treatment (NC, PC1, PC2, PTEW1, PTEW2) was analyzed on days 1, 3, 5, and 7 of storage at 4 °C. The results showed that liver pâtés containing plasma-treated egg whites had a similar nitrite and nitrosyl hemochrome content compared to samples containing the same amount of nitrite ions derived from sodium nitrite (p ≥ 0.05). In addition, 40 ppm nitrite ions, regardless of the source, was sufficient to achieve the desired reddish-pink color of the product over the entire storage period. Both nitrites from sodium nitrite and plasma-treated egg whites also significantly reduced lipid oxidation compared to the NC group (between 10% and 23% reduction on the last day), but had no significant effect on yield, pH, and texture parameters of the products. Based on the principal component analysis (PCA), the aroma profile of pâtés differed significantly between the groups with and without nitrites, with the largest differences observed on the first day (approx. 88%). Importantly, PTEW1 and PTEW2 aroma after production was similar to group PC2. The results of our study suggest that plasma-activated egg whites can be used as a potential source of nitrite in liver pâté production without adversely affecting the technological properties and shelf life of the final product
    corecore