547 research outputs found

    Birth of massive black hole binaries

    Get PDF
    If massive black holes (BHs) are ubiquitous in galaxies and galaxies experience multiple mergers during their cosmic assembly, then BH binaries should be common albeit temporary features of most galactic bulges. Observationally, the paucity of active BH pairs points toward binary lifetimes far shorter than the Hubble time, indicating rapid inspiral of the BHs down to the domain where gravitational waves lead to their coalescence. Here, we review a series of studies on the dynamics of massive BHs in gas-rich galaxy mergers that underscore the vital role played by a cool, gaseous component in promoting the rapid formation of the BH binary. The BH binary is found to reside at the center of a massive self-gravitating nuclear disc resulting from the collision of the two gaseous discs present in the mother galaxies. Hardening by gravitational torques against gas in this grand disc is found to continue down to sub-parsec scales. The eccentricity decreases with time to zero and when the binary is circular, accretion sets in around the two BHs. When this occurs, each BH is endowed with it own small-size (< 0.01 pc) accretion disc comprising a few percent of the BH mass. Double AGN activity is expected to occur on an estimated timescale of < 1 Myr. The double nuclear point-like sources that may appear have typical separation of < 10 pc, and are likely to be embedded in the still ongoing starburst. We note that a potential threat of binary stalling, in a gaseous environment, may come from radiation and/or mechanical energy injections by the BHs. Only short-lived or sub-Eddington accretion episodes can guarantee the persistence of a dense cool gas structure around the binary necessary for continuing BH inspiral.Comment: To appear in "2007 STScI Spring Symposium: Black Holes", eds. M. Livio & A. M. Koekemoer, Cambridge University Press, 25 pages, 12 figure

    Biases in mass estimates of dSph galaxies

    Full text link
    Using a high resolution N-body simulation of a two-component dwarf galaxy orbiting in the potential of the Milky Way, we study two effects that lead to significant biases in mass estimates of dwarf spheroidal galaxies. Both are due to the strong tidal interaction of initially disky dwarfs with their host. The tidal stripping of dwarf stars leads to the formation of strong tidal tails that are typically aligned with the line of sight of an observer positioned close to the host center. The stars from the tails contaminate the kinematic samples leading to a velocity dispersion profile increasing with the projected radius and resulting in an overestimate of mass. The tidal stirring of the dwarf leads to the morphological transformation of the initial stellar disk into a bar and then a spheroid. The distribution of stars in the dwarf remains non-spherical for a long time leading to an overestimate of its mass if it is observed along the major axis and an underestimate if it seen in the perpendicular direction.Comment: 5 pages, 3 figures, contribution to the proceedings of "Hunting for the Dark: The Hidden Side of Galaxy Formation", Malta, 19-23 Oct. 2009, eds. V.P. Debattista & C.C. Popescu, AIP Conference Series, in pres

    On the inspiral of Massive Black Holes in gas-rich galaxy mergers

    Full text link
    We present a study on the dynamics of massive BHs in galaxy mergers, obtained from a series of high-resolution N-Body/SPH simulations. The presence of a gaseous component is essential for the rapid formation of an eccentric (Keplerian) BH binary, that resides at the center of a massive (~10^9 Msun) turbulent nuclear disc. Using physically and/or numerically motivated recipes, we follow the accretion history of the BHs during the merger. The mass of the BHs increases as large central inflows of gas occur inside each galaxy, and their mass ratio varies with time. Given the encountered strong degeneracy between numerical resolution and physical assumptions, we suggest here three possible paths followed by the galaxies and the BHs during a merger in order to fulfill the M-sigma relation : Adjustment, Symbiosis, and BH Dominance. In an extremely high resolution run, we resolved the turbulent gas pattern down to parsec scales, and found that BH feedback is expected to be effective near the end of the merger. We then trace the BH binary orbit down to a scale of 0.1 pc modeling the nuclear disc as an equilibrium Mestel disc composed either of gas, gas and stars, or just stars. Under the action of dynamical friction against the rotating gaseous and/or stellar background the orbit circularizes. When this occurs, each BH is endowed with its own small-size (~0.01 pc) accretion disc comprising a few percent of the BH mass. Double AGN activity is expected to occur on an estimated timescale of ~10 Myrs, comparable to the inspiral time. The double nuclear point--like sources that may appear have typical separations of ~10 pc, and are likely to be embedded in the still ongoing starburst.Comment: 10 pages, 5 figures, Proceedings of the Conference "The Multicoloured Landscape of Compact Objects and their Explosive Origins", Cefalu` 200

    The stellar structure and kinematics of dwarf spheroidal galaxies formed by tidal stirring

    Full text link
    Using high-resolution N-body simulations we study the stellar properties of dwarf spheroidal galaxies resulting from the tidally induced morphological transformation of disky dwarfs on a cosmologically motivated eccentric orbit around the Milky Way. Dwarf galaxy models initially consist of an exponential stellar disk embedded in an extended spherical dark matter halo. Depending on the initial orientation of the disk with respect to the orbital plane, different final configurations are obtained. The least evolved dwarf is triaxial and retains a significant amount of rotation. The more evolved dwarfs are prolate spheroids with little rotation. We show that the final density distribution of stars can be approximated by a simple modification of the Plummer law. The kinematics of the dwarfs is significantly different depending on the line of sight which has important implications for mapping the observed stellar velocity dispersions of dwarfs to subhalo circular velocities. When the dwarfs are observed along the long axis, the measured velocity dispersion is higher and decreases faster with radius. In the case where rotation is significant, when viewed perpendicular to the long axis, the effect of minor axis rotation is detected, as expected for triaxial systems. We model the velocity dispersion profiles and rotation curves of the dwarfs by solving the Jeans equations for spherical and axisymmetric systems and adjusting different sets of free parameters. We find that the mass is typically overestimated when the dwarf is seen along the long axis and underestimated when the observation is along the short or intermediate axis. The effect of non-sphericity cannot however bias the inferred mass by more than 60 percent in either direction, even for the most strongly stripped dwarf which is close to disruption.Comment: 17 pages, 15 figures, revised version accepted for publication in Ap

    Orbital Decay of Supermassive Black Hole Binaries in Clumpy Multiphase Merger Remnants

    Full text link
    We simulate an equal-mass merger of two Milky Way-size galaxy discs with moderate gas fractions at parsec-scale resolution including a new model for radiative cooling and heating in a multi-phase medium, as well as star formation and feedback from supernovae. The two discs initially have a 2.6×106 M⊙2.6\times10^6\mathrm{~M_{\odot}} supermassive black hole (SMBH) embedded in their centers. As the merger completes and the two galactic cores merge, the SMBHs form a a pair with a separation of a few hundred pc that gradually decays. Due to the stochastic nature of the system immediately following the merger, the orbital plane of the binary is significantly perturbed. Furthermore, owing to the strong starburst the gas from the central region is completely evacuated, requiring ∼10\sim10~Myr for a nuclear disc to rebuild. Most importantly, the clumpy nature of the interstellar medium has a major impact on the the dynamical evolution of the SMBH pair, which undergo gravitational encounters with massive gas clouds and stochastic torquing by both clouds and spiral modes in the disk. These effects combine to greatly delay the decay of the two SMBHs to separations of a few parsecs by nearly two orders of magnitude, ∼108\sim 10^8 yr, compared to previous work. In mergers of more gas-rich, clumpier galaxies at high redshift stochastic torques will be even more pronounced and potentially lead to stronger modulation of the orbital decay. This suggests that SMBH pairs at separations of several tens of parsecs should be relatively common at any redshift.Comment: submitted to MNRAS; Comments very welcom
    • …
    corecore