82 research outputs found
Calculating the Energy Spectrum of Complex Low-Dimensional Heterostructures in the Electric Field
An algorithm for solving the steady-state Schrödinger equation for a complex piecewise-constant potential in the presence of the E-field is developed and implemented. The algorithm is based on the consecutive matching of solutions given by the Airy functions at the band boundaries with the matrix rank increasing by no more than two orders, which enables the characteristic solution to be obtained in the convenient form for search of the roots. The algorithm developed allows valid solutions to be obtained for the electric field magnitudes larger than the ground-state energy level, that is, when the perturbation method is not suitable
Deep learning-based video stream reconstruction in mass-production diffractive optical systems
Возможность существенно снизить массу и стоимость систем технического зрения привела к появлению большого числа работ, посвященных разработке новых оптических схем на основе дифракционной оптики и новых подходов к реконструкции получаемых изображений. Получаемые системы демонстрируют достаточное для прикладных систем технического зрения качество изображений. Однако при создании таких прикладных систем возможны источники дополнительных потерь качества получаемого видеопотока. В настоящей работе исследовано влияние на итоговое качество реконструируемого видеопотока таких факторов, как ограничения технологии массового производства дифракционной оптики, артефактов сжатия видеопотока с потерями, а также особенностей нейросетевого подхода к реконструкции. Предложена сквозная нейросетевая технология реконструкции изображений, позволяющая компенсировать дополнительные факторы потери качества и получить итоговый видеопоток с качеством, достаточным для решения прикладных задач технического зрения.
Many recent studies have focused on developing image reconstruction algorithms in optical systems based on flat optics. These studies demonstrate the feasibility of applying a combination of flat optics and the reconstruction algorithms in real vision systems. However, additional causes of quality loss have been encountered in the development of such systems. This study investigates the influence on the reconstructed image quality of such factors as limitations of mass production technology for diffractive optics, lossy video stream compression artifacts, and specificities of a neural network approach to image reconstruction. The paper offers an end-to-end deep learning-based image reconstruction framework to compensate for the additional factors of quality losing. It provides the image reconstruction quality sufficient for applied vision systems.Теоретическая часть работы и разработка нейросетевых моделей выполнена при поддержке гранта РНФ 20-69-47110, экспериментальная часть выполнена при поддержке грантов РФФИ № 18-07-01390-А, а также в рамках государственного задания ИСОИ РАН – филиала Федерального научно-исследовательского центра «Кристаллография и фотоника» РАН (соглашение № 007-ГЗ/Ч3363/26)
Nanoblocks embedded in L-shaped nanocavity of a plasmonic sensor for best sensor performance
In this work, we proposed a highly sensitive design of a plasmonic sensor which is formed by embedding a periodic array of nanoblocks in L-shaped cavity formed by the metal–insulator–metal waveguide. The nanoblocks are placed in the strong electric field confinement region to further enhance its strength by confining it to a small area. To validate the study, the spectral characteristics of the proposed sensor design is compared to the spectral characteristics of a standard design having the same geometric parameters excluding nanoblocks in the cavity. The study shows that the incorporation of 5 nanoblocks of length 25 nm in the cavity can provide best performance indicators in the form of sensitivity, figure of merit and Q-factor. The sensitivity, figure of merit and Q-factor of the proposed sensor design is 1065 nm/RIU, 251.17 and 343.4 which is significantly higher than the standard L-shape resonator design. The sensor design can be developed with a single fabrication step. Due to the ease of fabrication and the highly responsive nature of the design, it can be used in biomedical applications
Recent Development in Metasurfaces: A Focus on Sensing Applications
One of the fastest-expanding study areas in optics over the past decade has been metasurfaces (MSs). These subwavelength meta-atom-based ultrathin arrays have been developed for a broad range of functions, including lenses, polarization control, holography, coloring, spectroscopy, sensors, and many more. They allow exact control of the many properties of electromagnetic waves. The performance of MSs has dramatically improved because of recent developments in nanofabrication methods, and this concept has developed to the point that it may be used in commercial applications. In this review, a vital topic of sensing has been considered and an up-to-date study has been carried out. Three different kinds of MS absorber sensor formations, all-dielectric, all-metallic, and hybrid configurations, are presented for biochemical sensing applications. We believe that this review paper will provide current knowledge on state-of-the-art sensing devices based on MSs
Optical Fibre-Based Sensors—An Assessment of Current Innovations
Optical fibre sensors are an essential subset of optical fibre technology, designed specifically for sensing and measuring several physical parameters. These sensors offer unique advantages over traditional sensors, making them gradually more valuable in a wide range of applications. They can detect extremely small variations in the physical parameters they are designed to measure, such as analytes in the case of biosensing. This high sensitivity allows them to detect subtle variations in temperature, pressure, strain, the refractive index of analytes, vibration, and other environmental factors with exceptional accuracy. Moreover, these sensors enable remote sensing capabilities. Since light signals are used to carry information, the sensing elements can be placed at distant or inaccessible sites and still communicate the data back to the central monitoring system without signal degradation. In recent times, different attractive configurations and approaches have been proposed to enhance the sensitivity of the optical fibre-based sensor and are briefly explained in this review. However, we believe that the choice of optical fibre sensor configuration should be designated based on the specific application. As these sensors continue to evolve and improve, they will play an increasingly vital role in critical monitoring and control applications across various industries
Recent Advances in Wearable Optical Sensor Automation Powered by Battery versus Skin-like Battery-Free Devices for Personal Healthcare—A Review
Currently, old-style personal Medicare techniques rely mostly on traditional methods, such as cumbersome tools and complicated processes, which can be time consuming and inconvenient in some circumstances. Furthermore, such old methods need the use of heavy equipment, blood draws, and traditional bench-top testing procedures. Invasive ways of acquiring test samples can potentially cause patient discomfort and anguish. Wearable sensors, on the other hand, may be attached to numerous body areas to capture diverse biochemical and physiological characteristics as a developing analytical tool. Physical, chemical, and biological data transferred via the skin are used to monitor health in various circumstances. Wearable sensors can assess the aberrant conditions of the physical or chemical components of the human body in real time, exposing the body state in time, thanks to unintrusive sampling and high accuracy. Most commercially available wearable gadgets are mechanically hard components attached to bands and worn on the wrist, with form factors ultimately constrained by the size and weight of the batteries required for the power supply. Basic physiological signals comprise a lot of health-related data. The estimation of critical physiological characteristics, such as pulse inconstancy or variability using photoplethysmography (PPG) and oxygen saturation in arterial blood using pulse oximetry, is possible by utilizing an analysis of the pulsatile component of the bloodstream. Wearable gadgets with “skin-like” qualities are a new type of automation that is only starting to make its way out of research labs and into pre-commercial prototypes. Flexible skin-like sensing devices have accomplished several functionalities previously inaccessible for typical sensing devices due to their deformability, lightness, portability, and flexibility. In this paper, we studied the recent advancement in battery-powered wearable sensors established on optical phenomena and skin-like battery-free sensors, which brings a breakthrough in wearable sensing automation
Numerical Study of Fabrication-Related Effects of the Structural-Profile on the Performance of a Dielectric Photonic Crystal-Based Fluid Sensor
In this work, fabrication of a dielectric photonic crystal device and numerical study of its spectral characteristics as a refractive index sensor are presented for near infrared range. The proposed nanosensor device is composed of low-cost dielectric materials, i.e., silicon dioxide and niobium pentoxide, and is fabricated using focused ion-beam milling lithography. In the first part, the fabrication process of the device is discussed, along with the process parameters and their effects on the structural properties of the resulting photonic crystal elements. In the second part, the device is numerically tested as a sensor for the biological refractive index range of 1.33 to 1.4. The performance considerations of the biosensor device are studied for 12 different structural profiles based on the fabrication results. It is shown that the angular-wall-profile of the fabricated structures downgrades the performance of the sensor, and the optimum value of hole depth should be in the range of 930–1500 nm to get the best performance. A sensitivity of 185.117 nm/RIU and a figure of merit of 9.7 were recorded for the optimum design of the device; however, a maximum sensitivity of 296.183 nm/RIU and a figure-of-merit of 13.184 RIU−1 were achieved. The device is recommended for a variety of biosensing applications due to its inert material properties, stable design and easy integration with fiber-optic setups
- …