13 research outputs found

    Small Distributed Energy Russia: Combined Heat and Power Generation

    Get PDF
    The issues and current trends of research in the field of decentralized energy supply for the period up to 2030 were considered. The analysis of the cogeneration market in Russia was done. The questions of gasification and hydrogen technologies as applied to the market of cogeneration plants were elucidated. Promising technologies for autonomous decentralized energy supply and the evaluation of their applicability to small energy were presented

    Composite Solid Fuel: Research of Formation Parameters

    Get PDF
    Involving of local low-grade fuels resources in fuel and energy balance is actual question of research in the present. In this paper the possibility of processing low-grade fuel in the solid fuel composite was considered. The aim of the work is to define the optimal parameters for formation of the solid composite fuel. A result of researches determined that dextrin content in the binder allows to obtain solid composite fuel having the highest strength. The drying temperature for the various fuels was determined: for pellets production was 20-80 Β°C, for briquettes – 20-40 Β°C

    Thermal Energy Consumption in the Heat-Technology Production of Solid Composite Fuel From Low-Grade Raw Materials

    Get PDF
    An evaluation is made of the thermal energy consumed in the heat-technology production of solid composite fuel from low-grade organic raw materials. It is shown that the heat of decomposition of the organic mass and the combustion of the by-products of heat-technology may be sufficient to cover all the energy needs for processing peat, brown coal and wood chips. Producing solid composite fuel from sapropel requires external resources to compensate for part of the heat consumed. Calculations show that it is possible for the thermal processing of raw materials to proceed autothermally due to the heat of decomposition when the moisture content at the reactor inlet is limited: for peat it should be no more than 35%, 54% for brown coal, and 37% for wood chips. The low heat of decomposition of the sapropel organic mass means that its thermal processing cannot proceed autothermally

    Biomass Conversion into Solid Composite Fuel for Bed-Combustion

    Get PDF
    The purpose of this research is the conversion of different types of biomass into solid composite fuel. The subject of research is the heat conversion of biomass into solid composite fuel. The research object is the biomass of the Tomsk region (Russia): peat, waste wood, lake sapropel. Physical experiment of biomass conversion is used as method of research. The new experimental unit for thermal conversion of biomass into carbon residue, fuel gas and pyrolysis condensate is described. As a result of research such parameters are obtained: thermotechnical biomass characteristics, material balances and product characteristics of the heat-technology conversion. Different methods of obtaining solid composite fuel from the products of thermal technologies are considered. As a result, it is established: heat-technology provides efficient conversion of the wood chips and peat; conversion of the lake sapropel is inefficient since the solid composite fuel has the high ash content and net calorific value

    The effectiveness of the small-tonnage solid composite fuel production from biomass

    Get PDF
    The relevance of the work is caused by necessity of the involving of local low-grade raw materials in the fuel energy balance. The purpose of the work is technical and economical evaluation to implementation possibility of the solid composite fuel production from peat as an example of the Tomsk region. The results of a processing of the low-grade raw materials at certain types from Tomsk region into the solid composite fuel are shown, their competitiveness is evaluated, the process line to production of this fuel is suggested and the economical calculation of the production organization by its basis is made. As a result, the prime cost of solid composite fuel and technical and economical parameters of investments efficiency are determined

    Thermal Conversion of the Peat to Combustible Gases

    Get PDF
    Presented thermal characteristics of the peat and semi-coke derived on its basis. Presented the results of studies of the pyrolysis and catalytic conversion of peat and semi-coke at temperatures of 300-450 Β°C. According to the results of experiments to determine the composition and calorific value of combustible gases, obtained as the result of peat thermal conversion and semi-coke based on it. Presented the structure and analyzed the material balance and the energy distribution of derived products by the thermal conversion

    The Peat and Wood Gasification at Different Conditions of the Pyrolysis Process

    Get PDF
    In this article are described the prospects of peat and wood using as a raw material for gasification with producing of high potential synthesis gas. It is shown that the low-grade fuel recycling, in particular wood and peat makes a use of this energy sources a possible alternative to the using a more traditional coal and natural gas. The features of low-temperature pyrolysis are analyzed and computer modeling of this process at different conditions is conducted. The temperature influence of recycling to main parameters (calorific value, elementary composition of gaseous components) of produced gas is established

    Numerical simulation of synthesis gas incineration

    Get PDF
    The authors have analysed the expediency of the suggested low-grade fuels application method. Thermal processing of solid raw materials in the gaseous fuel, called synthesis gas, is investigated. The technical challenges concerning the applicability of the existing gas equipment developed and extensively tested exclusively for natural gas were considered. For this purpose computer simulation of three-dimensional syngas-incinerating flame dynamics was performed by means of the ANSYS Multiphysics engineering software. The subjects of studying were: a three-dimensional aerodynamic flame structure, heat-release and temperature fields, a set of combustion properties: a flare range and the concentration distribution of burnout reagents. The obtained results were presented in the form of a time-averaged pathlines with color indexing. The obtained results can be used for qualitative and quantitative evaluation of complex multicomponent gas incineration singularities

    The Outlook for Low-Grade Fuels in Tomsk Region: Research Experience at Tomsk Polytechnic University

    Get PDF
    The urgency of the discussed issue is caused by the need to substitute in the regional fuel-energy balances imported energy resources with local low-grade fuels. The main aim of the study is to estimate thermal properties of local fuels in Tomsk region and evaluate its energy use viability. The methods used in the study were based standard GOST 52911-2008, 11022-95 and 6382-2001, by means of a bomb calorimeter ABK-1 and Vario micro cube analyzer. The mineral ash of researched fuels was studied agreeing with GOST 10538-87. The results state the fact that discussed low-grade fuels of Tomsk region in the unprepared form are not able to replace imported coal in regional energy balance, because of the high moisture and ash content values. A promosing direction of a low-temperature fue processing is a catalytic converter, which allows receiving hydrogen-enriched syngas from the initial solid raw

    Assessment of thermal energy use in technique of producing solid composite fuels from low-grade raw materials

    No full text
    The relevance of the work is conditioned by the tendency of power engineering focus on renewable energy sources owing to the need to use efficiently the traditional organic resources. The paper considers low-grade fuel (peat, sawdust and sapropel) and brown coal as one of the most requested renewable energy resources in Russia. The heat-technology processing into solid composite fuel is selected as the method to enrich this resource. The main aim of the research is to assess energy use for producing solid composite fuel from low-grade raw material by the example of heat-technology developed by the authors. The methods used in the research. Thermotechnical characteristics of low-grade fuels were determined by the standard methods GOST R 52911-2013, 55661-2013 and 55660-2013. Calorific value was studied using a bomb calorimeter ABK-1 according to GOST 147-2013. The methods of material and heat balances were used in assessing thermal costs. The reliability of the results was confirmed by comparing them with the results of other investigations. Results. Using heat of fuel organic mass decomposition and heat of combustion of thermal-processing by-products allowed covering completely heating needs for producing solid composite fuel from peat, brown coal and sawdust. When treating sapropel a part of heat input should be covered by external sources. Low-temperature pyrolysis of low-grade raw material may take place autothermally owing to heat of organic mass decomposition. In this case it is necessary that the moisture of raw materials at the reactor input was lower than the following values: for peat - 35 %, for the investigated brown coal - 54 %, for sawdust - 37 %. Low value of heat of lake sapropel organic decomposition does not allow organizing autothermal heat-processing
    corecore