129 research outputs found

    Fabrication and in vitro deployment of a laser-activated shape memory polymer vascular stent

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Vascular stents are small tubular scaffolds used in the treatment of arterial stenosis (narrowing of the vessel). Most vascular stents are metallic and are deployed either by balloon expansion or by self-expansion. A shape memory polymer (SMP) stent may enhance flexibility, compliance, and drug elution compared to its current metallic counterparts. The purpose of this study was to describe the fabrication of a laser-activated SMP stent and demonstrate photothermal expansion of the stent in an <it>in vitro </it>artery model.</p> <p>Methods</p> <p>A novel SMP stent was fabricated from thermoplastic polyurethane. A solid SMP tube formed by dip coating a stainless steel pin was laser-etched to create the mesh pattern of the finished stent. The stent was crimped over a fiber-optic cylindrical light diffuser coupled to an infrared diode laser. Photothermal actuation of the stent was performed in a water-filled mock artery.</p> <p>Results</p> <p>At a physiological flow rate, the stent did not fully expand at the maximum laser power (8.6 W) due to convective cooling. However, under zero flow, simulating the technique of endovascular flow occlusion, complete laser actuation was achieved in the mock artery at a laser power of ~8 W.</p> <p>Conclusion</p> <p>We have shown the design and fabrication of an SMP stent and a means of light delivery for photothermal actuation. Though further studies are required to optimize the device and assess thermal tissue damage, photothermal actuation of the SMP stent was demonstrated.</p

    The “Flexi-Chamber”: A Novel Cost-Effective In Situ Respirometry Chamber for Coral Physiological Measurements

    Get PDF
    Coral reefs are threatened worldwide, with environmental stressors increasingly affecting the ability of reef-building corals to sustain growth from calcification (G), photosynthesis (P) and respiration (R). These processes support the foundation of coral reefs by directly influencing biogeochemical nutrient cycles and complex ecological interactions and therefore represent key knowledge required for effective reef management. However, metabolic rates are not trivial to quantify and typically rely on the use of cumbersome in situ respirometry chambers and/or the need to remove material and examine ex situ, thereby fundamentally limiting the scale, resolution and possibly the accuracy of the rate data. Here we describe a novel low-cost in situ respirometry bag that mitigates many constraints of traditional glass and plexi-glass incubation chambers. We subsequently demonstrate the effectiveness of our novel "Flexi-Chamber" approach via two case studies: 1) the Flexi-Chamber provides values of P, R and G for the reef-building coral Siderastrea cf. stellata collected from reefs close to Salvador, Brazil, which were statistically similar to values collected from a traditional glass respirometry vessel; and 2) wide-scale application of obtaining P, R and G rates for different species across different habitats to obtain inter- and intra-species differences. Our novel cost-effective design allows us to increase sampling scale of metabolic rate measurements in situ without the need for destructive sampling and thus significantly expands on existing research potential, not only for corals as we have demonstrated here, but also other important benthic groups

    Design, Construction, and Testing of a Helium-to-Hydrogen Heat Exchanger

    No full text

    Single-phase heat exchangers

    No full text
    This chapter deals with the thermal design theory of single phase recuperative heat exchangers. Established methods for (a) designing a heat exchanger that will yield a desired performance under specified operating conditions or (b) predicting the performance of a given heat exchanger operating under prescribed conditions are logically presented. Heat exchangers are first classified based on their construction and flow configuration. Next, basic concepts central to heat exchanger design, such as the fluid mechanics of internal flow, laminar and turbulent flow, boundary layer development, friction factor, heat transfer coefficient, overall heat transfer coefficient, fouling, etc., are discussed. Having laid the conceptual framework, two commonly encountered problems in heat exchanger design are described. Two well-established methods of designing heat exchangers, the logarithmic mean temperature difference (LMTD) and the effectiveness-NTU (Δ-NTU) methods, are then explained in some detail. The chapter concludes with a discussion of the heat transfer coefficient results/correlations under various flow situations and boundary conditions, which will be helpful in the calculation of the overall heat transfer coefficient
    • 

    corecore