11 research outputs found

    Serotonergic modulation of cognitive computations

    Get PDF
    Serotonin is a neuromodulator that is implicated in awake-sleep cycle, motor behaviors, reward, motivation, and mood. Recent molecular tools for cell-type-specific activity recording and manipulation with fine temporal and spatial resolutions are providing unprecedentedly detailed data about serotonergic neuromodulation. These newly gained information show substantial differences in the signaling and effect of serotonergic neuromodulation depending on the projection targets. To find the common denominator for this diversity, we conjecture that the evolution of serotonergic neuromodulation originates from signaling the time and resource available for action, learning, and development

    Reward probability and timing uncertainty alter the effect of dorsal raphe serotonin neurons on patience

    Get PDF
    Recent experiments have shown that optogenetic activation of serotonin neurons in the dorsal raphe nucleus (DRN) in mice enhances patience in waiting for future rewards. Here, we show that serotonin effect in promoting waiting is maximized by both high probability and high timing uncertainty of reward. Optogenetic activation of serotonergic neurons prolongs waiting time in no-reward trials in a task with 75% food reward probability, but not with 50 or 25% reward probabilities. Serotonin effect in promoting waiting increases when the timing of reward presentation becomes unpredictable. To coherently explain the experimental data, we propose a Bayesian decision model of waiting that assumes that serotonin neuron activation increases the prior probability or subjective confidence of reward delivery. The present data and modeling point to the possibility of a generalized role of serotonin in resolving trade-offs, not only between immediate and delayed rewards, but also between sensory evidence and subjective confidence

    Serotonergic projections to the orbitofrontal and medial prefrontal cortices differentially modulate waiting for future rewards

    Get PDF
    Optogenetic activation of serotonergic neurons in the dorsal raphe nucleus (DRN) enhances patience when waiting for future rewards, and this effect is maximized by both high probability and high timing uncertainty of reward. Here, we explored which serotonin projection areas contribute to these effects using optogenetic axon terminal stimulation. We found that serotonin stimulation in the orbitofrontal cortex (OFC) is nearly as effective as that in the DRN for promoting waiting, while in the nucleus accumbens, it does not promote waiting. We also found that serotonin stimulation in the medial prefrontal cortex (mPFC) promotes waiting only when the timing of future rewards is uncertain. Our Bayesian decision model of waiting assumed that the OFC and mPFC calculate the posterior probability of reward delivery separately. These results suggest that serotonin in the mPFC affects evaluation of time committed, while serotonin in the OFC is responsible for overall valuation of delayed rewards

    The Role of Serotonin in the Regulation of Patience and Impulsivity

    Get PDF
    Classic theories suggest that central serotonergic neurons are involved in the behavioral inhibition that is associated with the prediction of negative rewards or punishment. Failed behavioral inhibition can cause impulsive behaviors. However, the behavioral inhibition that results from predicting punishment is not sufficient to explain some forms of impulsive behavior. In this article, we propose that the forebrain serotonergic system is involved in “waiting to avoid punishment” for future punishments and “waiting to obtain reward” for future rewards. Recently, we have found that serotonergic neurons increase their tonic firing rate when rats await food and water rewards and conditioned reinforcer tones. The rate of tonic firing during the delay period was significantly higher when rats were waiting for rewards than for tones, and rats were unable to wait as long for tones as for rewards. These results suggest that increased serotonergic neuronal firing facilitates waiting behavior when there is the prospect of a forthcoming reward and that serotonergic activation contributes to the patience that allows rats to wait longer. We propose a working hypothesis to explain how the serotonergic system regulates patience while waiting for future rewards
    corecore