42 research outputs found
The evolution of the mitochondrial genomes of calcareous sponges and cnidarians
The mitochondrial DNA (mtDNA) in animals (Metazoa) is a favorite molecule for phylogenetic studies given its relative uniformity in both size and organization. Yet, as the depth coverage of representative animal groups increases sharply thanks to recent advances in sequencing technology, some clades remain stubbornly under sampled, if even represented at all. Difficulties associated with data collection from problematic taxa can arise from highly derived sequences, fragmented genomes, unusual structure, or any combination of these. Particularly illustrative examples are found in non-bilaterian animals (placozoans, sponges, cnidarians, comb jellies) where the mtDNA is more variable in size and structure. The present dissertation provides several case studies of what is considered âunusualâ mtDNA for animals. First, we describe some unusual characteristics of the mitochondrial genomes found in calcareous sponges (Calcarea, Porifera), where one, potentially two, novel genetic codes are inferred, transfer RNAs (tRNAs) are edited, and ribosomal RNA (rRNA) genes are in pieces. We also hypothesize that the mtDNA is linear and multipartite. Then, we explore the evolution of the mtDNA in medusozoan cnidarians (Medusozoa, Cnidaria). The mtDNA in Medusozoa is linear, and encodes two extra protein genes (lost in one clade) putatively involved in the maintenance and replication of the linear chromosomes. In addition, secondary segmentalization has occurred independently in some hydras (Hydridae) and box jellies (Cubozoa). Using the sequences from these mito-genomes, we propose a new phylogeny for Cnidaria, providing additional support for the clade [Medusozoa + Octocorallia], rendering Anthozoa (Hexacorallia + Octocorallia) paraphyletic. Finally, this dissertation concludes by a mini review stating the current state of knowledge of metazoan mtDNA and some of the pitfalls in the field of mitogenomics. In particular, the new findings further challenge the classical idea of a uniform mtDNA organization (frozen genome) in animals, and question any directional explanation of the evolution of the mtDNA in animals
Evolution of Linear Mitochondrial Genomes in Medusozoan Cnidarians
In nearly all animals, mitochondrial DNA (mtDNA) consists of a single circular molecule that encodes several subunits of the protein complexes involved in oxidative phosphorylation as well as part of the machinery for their expression. By contrast, mtDNA in species belonging to Medusozoa (one of the two major lineages in the phylum Cnidaria) comprises one to several linear molecules. Many questions remain on the ubiquity of linear mtDNA in medusozoans and the mechanisms responsible for its evolution, replication, and transcription. To address some of these questions, we determined the sequences of nearly complete linear mtDNA from 24 species representing all four medusozoan classes: Cubozoa, Hydrozoa, Scyphozoa, and Staurozoa. All newly determined medusozoan mitochondrial genomes harbor the 17 genes typical for cnidarians and map as linear molecules with a high degree of gene order conservation relative to the anthozoans. In addition, two open reading frames (ORFs), polB and ORF314, are identified in cubozoan, schyphozoan, staurozoan, and trachyline hydrozoan mtDNA. polB belongs to the B-type DNA polymerase gene family, while the product of ORF314 may act as a terminal protein that binds telomeres. We posit that these two ORFs are remnants of a linear plasmid that invaded the mitochondrial genomes of the last common ancestor of Medusozoa and are responsible for its linearity. Hydroidolinan hydrozoans have lost the two ORFs and instead have duplicated cox1 at each end of their mitochondrial chromosome(s). Fragmentation of mtDNA occurred independently in Cubozoa and Hydridae (Hydrozoa, Hydroidolina). Our broad sampling allows us to reconstruct the evolutionary history of linear mtDNA in medusozoans
Cryptic species in the parasitic Amoebophrya species complex revealed by a polyphasic approach
As critical primary producers and recyclers of organic matter, the diversity of marine protists has been extensively explored by high-throughput barcode sequencing. However, classification of short metabarcoding sequences into traditional taxonomic units is not trivial, especially for lineages mainly known by their genetic fingerprints. This is the case for the widespread Amoebophrya ceratii species complex, parasites of their dinoflagellate congeners. We used genetic and phenotypic characters, applied to 119 Amoebophrya individuals sampled from the same geographic area, to construct practical guidelines for species delineation that could be applied in DNA/RNA based diversity analyses. Based on the internal transcribed spacer (ITS) regions, ITS2 compensatory base changes (CBC) and genome k-mer comparisons, we unambiguously defined eight cryptic species among closely related ribotypes that differed by less than 97% sequence identity in their SSU rDNA. We then followed the genetic signatures of these parasitic species during a three-year survey of Alexandrium minutum blooms. We showed that these cryptic Amoebophrya species co-occurred and shared the same ecological niche. We also observed a maximal ecological fitness for parasites having narrow tointermediate host ranges, reflecting a high cost for infecting a broader host range. This study suggests that a complete taxonomic revision of these parasitic dinoflagellates is long overdue to understand their diversity and ecological role in the marine plankton
First Complete Mitochondrial Genome Sequence from a Box Jellyfish Reveals a Highly Fragmented Linear Architecture and Insights into Telomere Evolution
Animal mitochondrial DNAs (mtDNAs) are typically single circular chromosomes, with the exception of those from medusozoan cnidarians (jellyfish and hydroids), which are linear and sometimes fragmented. Most medusozoans have linear monomeric or linear bipartite mitochondrial genomes, but preliminary data have suggested that box jellyfish (cubozoans) have mtDNAs that consist of many linear chromosomes. Here, we present the complete mtDNA sequence from the winged box jellyfish Alatina moseri (the first from a cubozoan). This genome contains unprecedented levels of fragmentation: 18 unique genes distributed over eight 2.9- to 4.6-kb linear chromosomes. The telomeres are identical within and between chromosomes, and recombination between subtelomeric sequences has led to many genes initiating or terminating with sequences from other genes (the most extreme case being 150 nt of a ribosomal RNA containing the 5âČ end of nad2), providing evidence for a gene conversionâbased model of telomere evolution. The silent-site nucleotide variation within the A. moseri mtDNA is among the highest observed from a eukaryotic genome and may be associated with elevated rates of recombination
Ecdysozoan mitogenomics: evidence for a common origin of the legged invertebrates, the Panarthropoda
Ecdysozoa is the recently recognized clade of molting animals that comprises the vast majority of extant animal species and the most important invertebrate model organismsâthe fruit fly and the nematode worm. Evolutionary relationships within the ecdysozoans remain, however, unresolved, impairing the correct interpretation of comparative genomic studies. In particular, the affinities of the three Panarthropoda phyla (Arthropoda, Onychophora, and Tardigrada) and the position of Myriapoda within Arthropoda (Mandibulata vs. Myriochelata hypothesis) are among the most contentious issues in animal phylogenetics. To elucidate these relationships, we have determined and analyzed complete or nearly complete mitochondrial genome sequences of two Tardigrada, Hypsibius dujardini and Thulinia sp. (the first genomes to date for this phylum); one Priapulida, Halicryptus spinulosus; and two Onychophora, Peripatoides sp. and Epiperipatus biolleyi; and a partial mitochondrial genome sequence of the Onychophora Euperipatoides kanagrensis. Tardigrada mitochondrial genomes resemble those of the arthropods in term of the gene order and strand asymmetry, whereas Onychophora genomes are characterized by numerous gene order rearrangements and strand asymmetry variations. In addition, Onychophora genomes are extremely enriched in A and T nucleotides, whereas Priapulida and Tardigrada are more balanced. Phylogenetic analyses based on concatenated amino acid coding sequences support a monophyletic origin of the Ecdysozoa and the position of Priapulida as the sister group of a monophyletic Panarthropoda (Tardigrada plus Onychophora plus Arthropoda). The position of Tardigrada is more problematic, most likely because of long branch attraction (LBA). However, experiments designed to reduce LBA suggest that the most likely placement of Tardigrada is as a sister group of Onychophora. The same analyses also recover monophyly of traditionally recognized arthropod lineages such as Arachnida and of the highly debated clade Mandibulata
Origin and diversity of the wild cottons (Gossypium hirsutum) of Mound Key, Florida
Elucidating genetic diversity within wild forms of modern crops is essential for understanding domestication and the possibilities of wild germplasm utilization. Gossypium hirsutum is a predominant source of natural plant fibers and the most widely cultivated cotton species. Wild forms of G. hirsutum are challenging to distinguish from feral derivatives, and truly wild populations are uncommon. Here we characterize a population from Mound Key Archaeological State Park, Florida using genome-wide SNPs extracted from 25 individuals over three sites. Our results reveal that this population is genetically dissimilar from other known wild, landrace, and domesticated cottons, and likely represents a pocket of previously unrecognized wild genetic diversity. The unexpected level of divergence between the Mound Key population and other wild cotton populations suggests that the species may harbor other remnant and genetically distinct populations that are geographically scattered in suitable habitats throughout the Caribbean. Our work thus has broader conservation genetic implications and suggests that further exploration of natural diversity in this species is warranted.This article is published as Ning, W., Rogers, K.M., Hsu, CY. et al. Origin and diversity of the wild cottons (Gossypium hirsutum) of Mound Key, Florida. Sci Rep 14, 14046 (2024). https://doi.org/10.1038/s41598-024-64887-8. Works produced by employees of the U.S. Government as part of their official duties are not copyrighted within the U.S. The content of this document is not copyrighted
Rapid protein evolution, organellar reductions, and invasive intronic elements in the marine aerobic parasite dinoflagellate Amoebophrya spp
Background: Dinoflagellates are aquatic protists particularly widespread in the oceans worldwide. Some are responsible for toxic blooms while others live in symbiotic relationships, either as mutualistic symbionts in corals or as parasites infecting other protists and animals. Dinoflagellates harbor atypically large genomes (similar to 3 to 250 Gb), with gene organization and gene expression patterns very different from closely related apicomplexan parasites. Here we sequenced and analyzed the genomes of two early-diverging and co-occurring parasitic dinoflagellate Amoebophrya strains, to shed light on the emergence of such atypical genomic features, dinoflagellate evolution, and host specialization.
Results: We sequenced, assembled, and annotated high-quality genomes for two Amoebophrya strains (A25 and A120), using a combination of Illumina paired-end short-read and Oxford Nanopore Technology (ONT) MinION long-read sequencing approaches. We found a small number of transposable elements, along with short introns and intergenic regions, and a limited number of gene families, together contribute to the compactness of the Amoebophrya genomes, a feature potentially linked with parasitism. While the majority of Amoebophrya proteins (63.7% of A25 and 59.3% of A120) had no functional assignment, we found many orthologs shared with Dinophyceae. Our analyses revealed a strong tendency for genes encoded by unidirectional clusters and high levels of synteny conservation between the two genomes despite low interspecific protein sequence similarity, suggesting rapid protein evolution. Most strikingly, we identified a large portion of non-canonical introns, including repeated introns, displaying a broad variability of associated splicing motifs never observed among eukaryotes. Those introner elements appear to have the capacity to spread over their respective genomes in a manner similar to transposable elements. Finally, we confirmed the reduction of organelles observed in Amoebophrya spp., i.e., loss of the plastid, potential loss of a mitochondrial genome and functions.
Conclusion: These results expand the range of atypical genome features found in basal dinoflagellates and raise questions regarding speciation and the evolutionary mechanisms at play while parastitism was selected for in this particular unicellular lineage
Rapid protein evolution, organellar reductions, and invasive intronic elements in the marine aerobic parasite dinoflagellate Amoebophrya spp
BACKGROUND : Dinoflagellates are aquatic protists particularly widespread in the oceans worldwide. Some are responsible for toxic blooms while others live in symbiotic relationships, either as mutualistic symbionts in corals or as parasites infecting other protists and animals. Dinoflagellates harbor atypically large genomes (~ 3 to 250 Gb), with gene organization and gene expression patterns very different from closely related apicomplexan parasites. Here we sequenced and analyzed the genomes of two early-diverging and co-occurring parasitic dinoflagellate Amoebophrya strains, to shed light on the emergence of such atypical genomic features, dinoflagellate evolution, and host specialization. RESULTS : We sequenced, assembled, and annotated high-quality genomes for two Amoebophrya strains (A25 and A120), using a combination of Illumina paired-end short-read and Oxford Nanopore Technology (ONT) MinION long-read sequencing approaches. We found a small number of transposable elements, along with short introns and intergenic regions, and a limited number of gene families, together contribute to the compactness of the Amoebophrya genomes, a feature potentially linked with parasitism. While the majority of Amoebophrya proteins (63.7% of A25 and 59.3% of A120) had no functional assignment, we found many orthologs shared with Dinophyceae. Our analyses revealed a strong tendency for genes encoded by unidirectional clusters and high levels of synteny conservation between the two genomes despite low interspecific protein sequence similarity, suggesting rapid protein evolution. Most strikingly, we identified a large portion of non-canonical introns, including repeated introns, displaying a broad variability of associated splicing motifs never observed among eukaryotes. Those introner elements appear to have the capacity to spread over their respective genomes in a manner similar to transposable elements. Finally, we confirmed the reduction of organelles observed in Amoebophrya spp., i.e., loss of the plastid, potential loss of a mitochondrial genome and functions.
CONCLUSION : These results expand the range of atypical genome features found in basal dinoflagellates and raise
questions regarding speciation and the evolutionary mechanisms at play while parastitism was selected for in this
particular unicellular lineage.ADDITIONAL FILE 1: FIGURE S1. Phylogeny of Alveolata. Proteomes from 89 alveolates genomes and transcriptome assemblies from the MMETSP project (https://zenodo.org/record/257026/files/) were used to create orthologous groups using orthofinder v2.2 with the diamond BLAST similarity search. Single ortholog alignments were pruned using PhyloTreePruner v.1.0 (minimum taxa to keep 44 and support value 0.9) and realigned using mafft v7 and filtered with Gblocks v.0.91b (âb5 = a -p = n). Filtered alignments were concatenated using seqCat.pl and a phylogenetic tree was produced under Maximum Likelihood framework using RAxML v8.2.9 with the PROTGAMMALGF model of sequence evolution and 101 bootstraps. Asterics represent support values of 95 and above. A detailed method can be found in Kayal et al. 2018 BMC Evol. Biol. (https://doi.org/10.1186/s12862-018-1142-0). The full tree can be found at http://mmo.sb-roscoff.fr/jbrowseAmoebophrya/. FIGURE S2. SSU rDNA sequence identity (in percentage, relative to A25 and A120 compared to other species). FIGURE S3. Distribution of k-mer in A25 and A120 genomes. FIGURE S4. Classification of repeated elements in 3 Amoebophrya genomes (AT5, A25, and A120) using REPET. The x-axis represents the cumulated number of bases of repeated elements in the genome. FIGURE S5. Conserved motif of the putative splice leader (SL) in A25 and A120. FIGURE S6. Alignments of gene encoding the putative spliced leader (SL) gene in A25 and A120. FIGURE S7. Gene orientation change rate in 3 Amoebophrya genomes. FIGURE S8. Number of orthologs genes shared by selected taxa. FIGURE S9. Boxplot of the dN/dS ratios of orthologous genes between A25 and A120, calculated using the model average method (MA). FIGURE S10. Synteny dot-plot obtained by comparison between Amoebophrya A25 and AT5 genomes. FIGURE S11. Synteny dot-plot obtained by comparison between Amoebophrya A120 and AT5 genomes. FIGURE S12. Intron length distribution. FIGURE S13. GC content distribution. FIGURE S14. Multiple alignments of U2 snRNAs. FIGURE S15. Multiple alignments of U4 snRNAs. FIGURE S16. Multiple alignments of U5 snRNAs. FIGURE S17. Multiple alignments of U6 snRNAs. FIGURE S18. Secondary structure of Amoebophrya snRNA. FIGURE S19. Example of introner elements (IEs) in Amoebophrya. FIGURE S20. Distribution the direct repeats with size ranging between 3 and 8 nucleotides in A25. FIGURE S21. Distribution of the direct repeats with size ranging between 3 and 8 nucleotides in A120. FIGURE S22. Composition of direct repeats in introners elements. The diversity in composition of the three (a, b, c) most abundant of direct repeats in introner elements in A25 (up) and A120 (down). FIGURE S23. Terminal inverted repeat locations around the splicing sites in A25 and A120. The position of inverted repeats according to the location of the splice sites in A25 and A120. Left, the inverted repeats of A120 are located at 1â5 the nucleotides upstream and downstream of the splice sites. Right, the inverted repeats of A25 are located at the 1â6 nucleotides in upstream and downstream of the splice sites. FIGURE S24. The flowchart for the in silico search of introner elements. FIGURE S25. Hierarchical clustering analysis (pairwise similarity and OrthoMCL) of all intron families and of the inverted repeats in A25 and A120. FIGURE S26. Percentage of genes with assigned functions in relation with introns composition. FIGURE S27. Difference in the proportion of IEs-containing-genes compared to their KEGG assignment in A25 and A120. FIGURE S28. Distribution of conserved introns. TABLE S1. RCC number, date and site of isolation of strains considered in this study. TABLE S2. Metrics of Nanopore runs for the two Amoebophrya strains. TABLE S3. Search for pathways involved in plastidial functions that are entirely independent of plastid-encoded gene content. TABLE S4. Number of the different types of introns identified in A25 and A120 genomes. TABLE S5. Search for RNA editing in A25 and A120 introns. TABLE S6. Putative Amoebophrya A25 and A120 snRNP homologs. TABLE S7. Classification into families of non-canonical introns in A25 and A120. TABLE S8. RNAseq read assembly statistics of Amoebophrya A25 and A120 corresponding samples from the different time of infection and to the freeliving stage (dinospore only). TABLE S9. Total number of contigs belonging to samples from different stages of infection and the proportion of them that were aligned against the genomes of both Amoebophrya A25 and A120. ND corresponds to ânot determinedâ when no measurement was done. TABLE S10. Metabolic pathway screened in A25 and A120 proteomes.This research was funded by the ANR (Agence Nationale de la Recherche)
Grant ANR-14-CE02-0007 HAPAR, the CEA and the RĂ©gion Bretagne (RC
doctoral grant ARED PARASITE 9450 and EK postdoctoral grant SAD HAPAR
9229), and the CNRS (X-life SEAgOInG).http://www.mdpi.com/journal/biomedicinesam2022BiochemistryGeneticsMicrobiology and Plant Patholog
The evolution of the mitochondrial genomes of calcareous sponges and cnidarians
The mitochondrial DNA (mtDNA) in animals (Metazoa) is a favorite molecule for phylogenetic studies given its relative uniformity in both size and organization. Yet, as the depth coverage of representative animal groups increases sharply thanks to recent advances in sequencing technology, some clades remain stubbornly under sampled, if even represented at all. Difficulties associated with data collection from problematic taxa can arise from highly derived sequences, fragmented genomes, unusual structure, or any combination of these. Particularly illustrative examples are found in non-bilaterian animals (placozoans, sponges, cnidarians, comb jellies) where the mtDNA is more variable in size and structure. The present dissertation provides several case studies of what is considered âunusualâ mtDNA for animals. First, we describe some unusual characteristics of the mitochondrial genomes found in calcareous sponges (Calcarea, Porifera), where one, potentially two, novel genetic codes are inferred, transfer RNAs (tRNAs) are edited, and ribosomal RNA (rRNA) genes are in pieces. We also hypothesize that the mtDNA is linear and multipartite. Then, we explore the evolution of the mtDNA in medusozoan cnidarians (Medusozoa, Cnidaria). The mtDNA in Medusozoa is linear, and encodes two extra protein genes (lost in one clade) putatively involved in the maintenance and replication of the linear chromosomes. In addition, secondary segmentalization has occurred independently in some hydras (Hydridae) and box jellies (Cubozoa). Using the sequences from these mito-genomes, we propose a new phylogeny for Cnidaria, providing additional support for the clade [Medusozoa + Octocorallia], rendering Anthozoa (Hexacorallia + Octocorallia) paraphyletic. Finally, this dissertation concludes by a mini review stating the current state of knowledge of metazoan mtDNA and some of the pitfalls in the field of mitogenomics. In particular, the new findings further challenge the classical idea of a uniform mtDNA organization (frozen genome) in animals, and question any directional explanation of the evolution of the mtDNA in animals