6 research outputs found

    Precision glycan supplementation improves gut microbiota diversity, performance, and disease outbreak resistance in broiler chickens

    Get PDF
    The poultry industry contributes significantly to the global meat industry but faces many production challenges like high-density housing, welfare issues, and pathogenic infections. While antibiotics have commonly been used to treat many of these issues, they are being removed from poultry production globally due to increased microbial resistance. Precision glycans offer a viable alternative to antibiotics by modulating microbial metabolic pathways. In this study, we investigated the effects of precision glycan supplementation on productivity and gut microbiota in broilers. The experiment was conducted in a commercial setting using 32,400 male Ross chickens randomly divided into three sheds with 10,800 birds each. One shed with 12 pen replicates of 900 birds was used as control, while the other two with an equal number of replicates and birds were assigned to precision glycan supplementation. The treatment significantly improved the average daily weight gain and feed conversion ratio, with a significant modification in the abundance of several bacterial taxa in the caecum, ileum, and ileum mucosa microbial communities. There was increased richness and diversity in the caecum, with a reduction in Proteobacteria and an increase in Firmicutes. Richness remained unchanged in the ileum, with an increase in diversity and reduction in pathogenic genera like Clostridium and Escherichia-Shigella. Ileum mucosa showed a lower abundance of mucin degraders and an increased presence of next-generation probiotics. Supplemented birds showed a high level of disease resistance when the farm experienced an outbreak of infectious bronchitis, evidenced by lower mortality. Histological analysis confirmed improvements in the ileum and liver health, where the precision glycan supplementation reduced the area of congested sinusoids compared to the control group in the liver and significantly improved ileum intestinal morphology by increasing crypt depth and surface area. These results collectively suggest that precision glycans offer substantial benefits in poultry production by improving productivity, gut health, and disease resistance

    Pioneering gut health improvements in piglets with phytogenic feed additives

    Get PDF
    This research investigates the effects of phytogenic feed additives (PFAs) on the growth performance, gut microbial community, and microbial metabolic functions in weaned piglets via a combined 16S rRNA gene amplicon and shotgun metagenomics approach. A controlled trial was conducted using 200 pigs to highlight the significant influence of PFAs on gut microbiota dynamics. Notably, the treatment group revealed an increased gut microbiota diversity, as measured with the Shannon and Simpson indices. The increase in diversity is accompanied by an increase in beneficial bacterial taxa, such as Roseburia, Faecalibacterium, and Prevotella, and a decline in potential pathogens like Clostridium sensu stricto 1 and Campylobacter. Shotgun sequencing at the species level confirmed these findings. This modification in microbial profile was coupled with an altered profile of microbial metabolic pathways, suggesting a reconfiguration of microbial function under PFA influence. Significant shifts in overall microbial community structure by week 8 demonstrate PFA treatment’s temporal impact. Histomorphological examination unveiled improved gut structure in PFA-treated piglets. The results of this study indicate that the use of PFAs as dietary supplements can be an effective strategy, augmenting gut microbiota diversity, reshaping microbial function, enhancing gut structure, and optimising intestinal health of weaned piglets providing valuable implications for swine production. Key points • PFAs significantly diversify the gut microbiota in weaned piglets, aiding balance. • Changes in gut structure due to PFAs indicate improved resistance to weaning stress. • PFAs show potential to ease weaning stress, offering a substitute for antibiotics in piglet diets

    Bacillus amyloliquefaciens probiotics mix supplementation in a broiler leaky gut model

    Get PDF
    The supplementation of antimicrobial growth promoters (AGPs) has been banned in many countries because of the emergence of antimicrobial-resistant pathogens in poultry products and the environment. Probiotics have been broadly studied and demonstrated as a promising AGP substitute. Our study is centred on the effects of a multi-strain Bacillus-based probiotic product on broiler production performance and gut microbial profile in a dexamethasone-induced leaky gut challenge. Two hundred and fifty-six broiler chicks were hatched and randomly assigned into four groups (wheat-soybean meal basal diet (BD) = non-supplemented control (C), BD supplemented with dexamethasone in week 4 (CD), BD containing a probiotic from day one (P), and BD containing a probiotic from day one and supplemented with dexamethasone during challenge week 4 (PD)). The production performance and caecal, gizzard, jejunal lumen and jejunal mucosa swab microbiota were studied by 16S rRNA gene sequencing. The Bacillus probiotic product significantly improved production performance and altered caecal gut microbiota (p ≤ 0.05), but no significant impact on microbiota was observed in other gut sections

    Controlled Intestinal Microbiota Colonisation in Broilers under the Industrial Production System

    Get PDF
    The concept of designer microbiota in chicken is focused on early exposure of the hatchlings to pathogen-free microbiota inoculum, limiting the early access to harmful and pathogenic microorganisms, thus promoting colonisation of the gut with beneficial and natural poultry microbiota. In this study, we controlled colonisation of the intestine in broiler chickens in a large-scale industrial setting via at-hatch administration of a commercial product containing a highly diverse microbiota originating from the chicken caecum. The treatment significantly transformed the microbiota membership in the crop, proventriculus, jejunum and caecum and significantly altered the taxa abundance in the jejunum, jejunum mucosa, and caecum estimated using PERMANOVA and unweighted and weighted UniFrac distances, respectively. The treatment also improved the growth rate in chickens with no significant alteration in feed conversion ratio. A comparison of inoculum product microbiota structure revealed that the inoculum had the highest Shannon diversity index compared to all investigated gut sections, and the number of Observed Species second only to the caecal community. PCoA plots using weighted or unweighted UniFrac placed the inoculum samples together with the samples from the caecal origin

    Molecular identification and characterisation of Mannheimia haemolytica

    No full text
    Mannheimia haemolytica is known as one of the major bacterial contributors to Bovine Respiratory Disease (BRD) syndrome. This study sought to establish a novel species-specific PCR to aid in identification of this key pathogen. As well, an existing multiplex PCR was used to determine the prevalence of serovars 1, 2 or 6 in Australia. Most of the 65 studied isolates originated from cattle with a total of 11 isolates from small ruminants. All problematic field isolates in the identification or serotyping PCRs were subjected to whole genome sequencing and bioinformatic analysis. The field isolates were also subjected to rep-PCR fingerprinting. A total of 59 out of the 65 tested isolates were conformed as M. haemolytica by the new species-specific PCR which is based on the rpoB gene. The confirmed M. haemolytica field isolates were assigned to serovars 1 (24 isolates), 2 (seven isolates) and 6 (26 isolates) while two of the isolates were negative in the serotyping PCR. The two non-typeable isolates were assigned to serovar 7 and 14 following whole genome sequencing and bioinformatic analysis. The rep-PCR typing resulted in five major clusters with serovars 1 and 6 often within the same cluster. The M. haemolytica-specific PCR developed in this work was species specific and should be a valuable support for frontline diagnostic laboratories. The serotyping results support the relative importance of serovars 1 and 6 in bovine respiratory disease

    Ileum transcriptional response to prolonged supplementation with phytogenic product containing menthol, carvacrol and carvone

    No full text
    Pathogen control is a critical issue in the layer industry. Plant-based natural products are firmly replacing the undesirable use of antibiotics in animal production. The poultry industry embraced the opportunity to distance itself from the negative public perception of antibiotic use. In this study, we investigated the effects of a phytogenic product comprising of menthol, carvacrol and carvone on ileum gene expression profile in layers after 16 weeks of continual supplementation. Phytogen supplementation increased endocytosis and autophagy while showing significant predicted cardiovascular protective effects. Statistical comparison with over 100,000 manually curated and comparably reanalysed public datasets suggests that the phytogen effects are highly significantly comparable with transcriptomic effects of clinical antibiotics doxycycline and geldanamycin, and that phytogen can reverse transcriptomic effects of a range of viral diseases and malaria. Our data confirmed the hypothesis that similarly to the original essential oil type antimicrobial constituents of phytogenic products, there may be a range of benefits unrelated to their critical antimicrobial action, contributing to improved bird welfare
    corecore