16,617 research outputs found

    The health and sport engagement (HASE) intervention and evaluation project: protocol for the design, outcome, process and economic evaluation of a complex community sport intervention to increase levels of physical activity.

    Get PDF
    INTRODUCTION: Sport is being promoted to raise population levels of physical activity for health. National sport participation policy focuses on complex community provision tailored to diverse local users. Few quality research studies exist that examine the role of community sport interventions in raising physical activity levels and no research to date has examined the costs and cost-effectiveness of such provision. This study is a protocol for the design, outcome, process and economic evaluation of a complex community sport intervention to increase levels of physical activity, the Health and Sport Engagement (HASE) project part of the national Get Healthy Get Active programme led by Sport England. METHODS AND ANALYSIS: The HASE study is a collaborative partnership between local community sport deliverers and sport and public health researchers. It involves designing, delivering and evaluating community sport interventions. The aim is to engage previously inactive people in sustained sporting activity for 1×30 min a week and to examine associated health and well-being outcomes. The study uses mixed methods. Outcomes (physical activity, health, well-being costs to individuals) will be measured by a series of self-report questionnaires and attendance data and evaluated using interrupted time series analysis controlling for a range of sociodemographic factors. Resource use will be identified and measured using diaries, interviews and records and presented alongside effectiveness data as incremental cost-effectiveness ratios and cost-effectiveness acceptability curves. A longitudinal process evaluation (focus groups, structured observations, in-depth interview methods) will examine the efficacy of the project for achieving its aim using the principles of thematic analysis. ETHICS AND DISSEMINATION: The results of this study will be disseminated through peer-reviewed publications, academic conference presentations, Sport England and national public health organisation policy conferences, and practice-based case studies. Ethical approval was obtained through Brunel University London's research ethics committee (reference number RE33-12)

    Lyapunov exponents as a dynamical indicator of a phase transition

    Full text link
    We study analytically the behavior of the largest Lyapunov exponent λ1\lambda_1 for a one-dimensional chain of coupled nonlinear oscillators, by combining the transfer integral method and a Riemannian geometry approach. We apply the results to a simple model, proposed for the DNA denaturation, which emphasizes a first order-like or second order phase transition depending on the ratio of two length scales: this is an excellent model to characterize λ1\lambda_1 as a dynamical indicator close to a phase transition.Comment: 8 Pages, 3 Figure

    The Particulate Methane Monooxygenase from Methylococcus capsulatus (Bath) Is a Novel Copper-containing Three-subunit Enzyme: isolation and charactization

    Get PDF
    The particulate methane monooxygenase (pMMO) is known to be very difficult to study mainly due to its unusual activity instability in vitro. By cultivating Methylococcus capsulatus (Bath) under methane stress conditions and high copper levels in the growth medium, membranes highly enriched in the pMMO with exceptionally stable activity can be isolated from these cells. Purified and active pMMO can be subsequently obtained from these membrane preparations using protocols in which an excess of reductants and anaerobic conditions were maintained during membrane solubilization by dodecyl beta-D-maltoside and purification by chromatography. The pMMO was found to be the major constituent in these membranes, constituting 60-80% of total membrane proteins. The dominant species of the pMMO was found to consist of three subunits, alpha, beta, and gamma, with an apparent molecular mass of 45, 26, and 23 kDa, respectively. A second species of the pMMO, a proteolytically processed version of the enzyme, was found to be composed of three subunits, alpha', beta, and gamma, with an apparent molecular mass of 35, 26, and 23 kDa, respectively. The alpha and alpha' subunits from these two forms of the pMMO contain identical N-terminal sequences. The gamma subunit, however, exhibits variation in its N-terminal sequence. The pMMO is a copper-containing protein only and shows a requirement for Cu(I) ions. Approximately 12-15 Cu ions per 94-kDa monomeric unit were observed. The pMMO is sensitive to dioxygen tension. On the basis of dioxygen sensitivity, three kinetically distinct forms of the enzyme can be distinguished. A slow but air-stable form, which is converted into a "pulsed" state upon direct exposure to atmospheric oxygen pressure, is considered as type I pMMO. This form was the subject of our pMMO isolation effort. Other forms (types II and III) are deactivated to various extents upon exposure to atmospheric dioxygen pressure. Under inactivating conditions, these unstable forms release protons to the buffer (~10 H+/94-kDa monomeric unit) and eventually become completely inactive

    An Integral Spectral Representation of the Propagator for the Wave Equation in the Kerr Geometry

    Get PDF
    We consider the scalar wave equation in the Kerr geometry for Cauchy data which is smooth and compactly supported outside the event horizon. We derive an integral representation which expresses the solution as a superposition of solutions of the radial and angular ODEs which arise in the separation of variables. In particular, we prove completeness of the solutions of the separated ODEs. This integral representation is a suitable starting point for a detailed analysis of the long-time dynamics of scalar waves in the Kerr geometry.Comment: 41 pages, 4 figures, minor correction

    Brick Walls and AdS/CFT

    Full text link
    We discuss the relationship between the bulk-boundary correspondence in Rehren's algebraic holography (and in other 'fixed-background' approaches to holography) and in mainstream 'Maldacena AdS/CFT'. Especially, we contrast the understanding of black-hole entropy from the viewpoint of QFT in curved spacetime -- in the framework of 't Hooft's 'brick wall' model -- with the understanding based on Maldacena AdS/CFT. We show that the brick-wall modification of a Klein Gordon field in the Hartle-Hawking-Israel state on 1+2-Schwarzschild AdS (BTZ) has a well-defined boundary limit with the same temperature and entropy as the brick-wall-modified bulk theory. One of our main purposes is to point out a close connection, for general AdS/CFT situations, between the puzzle raised by Arnsdorf and Smolin regarding the relationship between Rehren's algebraic holography and mainstream AdS/CFT and the puzzle embodied in the 'correspondence principle' proposed by Mukohyama and Israel in their work on the brick-wall approach to black hole entropy. Working on the assumption that similar results will hold for bulk QFT other than the Klein Gordon field and for Schwarzschild AdS in other dimensions, and recalling the first author's proposed resolution to the Mukohyama-Israel puzzle based on his 'matter-gravity entanglement hypothesis', we argue that, in Maldacena AdS/CFT, the algebra of the boundary CFT is isomorphic only to a proper subalgebra of the bulk algebra, albeit (at non-zero temperature) the (GNS) Hilbert spaces of bulk and boundary theories are still the 'same' -- the total bulk state being pure, while the boundary state is mixed (thermal). We also argue from the finiteness of its boundary (and hence, on our assumptions, also bulk) entropy at finite temperature, that the Rehren dual of the Maldacena boundary CFT cannot itself be a QFT and must, instead, presumably be something like a string theory.Comment: 54 pages, 3 figures. Arguments strengthened in the light of B.S. Kay `Instability of Enclosed Horizons' arXiv:1310.739

    Super-Rough Glassy Phase of the Random Field XY Model in Two Dimensions

    Full text link
    We study both analytically, using the renormalization group (RG) to two loop order, and numerically, using an exact polynomial algorithm, the disorder-induced glass phase of the two-dimensional XY model with quenched random symmetry-breaking fields and without vortices. In the super-rough glassy phase, i.e. below the critical temperature TcT_c, the disorder and thermally averaged correlation function B(r)B(r) of the phase field θ(x)\theta(x), B(r)=ˉB(r) = \bar{} behaves, for rar \gg a, as B(r)A(τ)ln2(r/a)B(r) \simeq A(\tau) \ln^2 (r/a) where r=rr = |r| and aa is a microscopic length scale. We derive the RG equations up to cubic order in τ=(TcT)/Tc\tau = (T_c-T)/T_c and predict the universal amplitude A(τ)=2τ22τ3+O(τ4){A}(\tau) = 2\tau^2-2\tau^3 + {\cal O}(\tau^4). The universality of A(τ)A(\tau) results from nontrivial cancellations between nonuniversal constants of RG equations. Using an exact polynomial algorithm on an equivalent dimer version of the model we compute A(τ){A}(\tau) numerically and obtain a remarkable agreement with our analytical prediction, up to τ0.5\tau \approx 0.5.Comment: 5 pages, 3 figure

    Deflection and Rotation of CMEs from Active Region 11158

    Full text link
    Between the 13 and 16 of February 2011 a series of coronal mass ejections (CMEs) erupted from multiple polarity inversion lines within active region 11158. For seven of these CMEs we use the Graduated Cylindrical Shell (GCS) flux rope model to determine the CME trajectory using both Solar Terrestrial Relations Observatory (STEREO) extreme ultraviolet (EUV) and coronagraph images. We then use the Forecasting a CME's Altered Trajectory (ForeCAT) model for nonradial CME dynamics driven by magnetic forces, to simulate the deflection and rotation of the seven CMEs. We find good agreement between the ForeCAT results and the reconstructed CME positions and orientations. The CME deflections range in magnitude between 10 degrees and 30 degrees. All CMEs deflect to the north but we find variations in the direction of the longitudinal deflection. The rotations range between 5\mydeg and 50\mydeg with both clockwise and counterclockwise rotations occurring. Three of the CMEs begin with initial positions within 2 degrees of one another. These three CMEs all deflect primarily northward, with some minor eastward deflection, and rotate counterclockwise. Their final positions and orientations, however, respectively differ by 20 degrees and 30 degrees. This variation in deflection and rotation results from differences in the CME expansion and radial propagation close to the Sun, as well as the CME mass. Ultimately, only one of these seven CMEs yielded discernible in situ signatures near Earth, despite the active region facing near Earth throughout the eruptions. We suggest that the differences in the deflection and rotation of the CMEs can explain whether each CME impacted or missed the Earth.Comment: 18 pages, 6 figures, accepted in Solar Physic

    'She's like a daughter to me': insights into care, work and kinship from rural Russia

    Get PDF
    This article draws on ethnographic research into a state-funded homecare service in rural Russia. The article discusses intersections between care, work and kinship in the relationships between homecare workers and their elderly wards and explores the ways in which references to kinship, as a means of authenticating paid care and explaining its emotional content, reinforce public and private oppositions while doing little to relieve the tensions and conflicts of care work. The discussion brings together detailed empirical insights into local ideologies and practices as a way of generating new theoretical perspectives, which will be of relevance beyond the particular context of study

    Cusps and shocks in the renormalized potential of glassy random manifolds: How Functional Renormalization Group and Replica Symmetry Breaking fit together

    Full text link
    We compute the Functional Renormalization Group (FRG) disorder- correlator function R(v) for d-dimensional elastic manifolds pinned by a random potential in the limit of infinite embedding space dimension N. It measures the equilibrium response of the manifold in a quadratic potential well as the center of the well is varied from 0 to v. We find two distinct scaling regimes: (i) a "single shock" regime, v^2 ~ 1/L^d where L^d is the system volume and (ii) a "thermodynamic" regime, v^2 ~ N. In regime (i) all the equivalent replica symmetry breaking (RSB) saddle points within the Gaussian variational approximation contribute, while in regime (ii) the effect of RSB enters only through a single anomaly. When the RSB is continuous (e.g., for short-range disorder, in dimension 2 <= d <= 4), we prove that regime (ii) yields the large-N FRG function obtained previously. In that case, the disorder correlator exhibits a cusp in both regimes, though with different amplitudes and of different physical origin. When the RSB solution is 1-step and non- marginal (e.g., d < 2 for SR disorder), the correlator R(v) in regime (ii) is considerably reduced, and exhibits no cusp. Solutions of the FRG flow corresponding to non-equilibrium states are discussed as well. In all cases the regime (i) exhibits a cusp non-analyticity at T=0, whose form and thermal rounding at finite T is obtained exactly and interpreted in terms of shocks. The results are compared with previous work, and consequences for manifolds at finite N, as well as extensions to spin glasses and related models are discussed.Comment: v2: Note added in proo
    corecore