1,488 research outputs found

    The entropy distribution in clusters: evidence of feedback?

    Full text link
    The entropy of the intracluster medium at large radii has been shown recently to deviate from the self-similar scaling with temperature. Using N-body/hydrodynamic simulations of the LCDM cosmology, we demonstrate that this deviation is evidence that feedback processes are important in generating excess entropy in clusters. While radiative cooling increases the entropy of intracluster gas, resulting in a good match to the data in the centres of clusters, it produces an entropy-temperature relation closer to the self-similar scaling at larger radii. A model that includes feedback from galaxies, however, not only stabilises the cooling rate in the simulation, but is capable of reproducing the observed scaling behaviour both in cluster cores and at large radii. Feedback modifies the entropy distribution in clusters due to its increasing ability at expelling gas from haloes with decreasing mass. The strength of the feedback required, as suggested from our simulations, is consistent with supernova energetics, providing a large fraction of the energy reaches low-density regions and is originally contained within a small mass of gas.Comment: 5 pages, 3 figures; accepted for publication in MNRA

    Simulated X-ray Cluster Temperature Maps

    Get PDF
    Temperature maps are presented of the 9 largest clusters in the mock catalogues of Muanwong et al. for both the Preheating and Radiative models. The maps show that clusters are not smooth, featureless systems, but contain a variety of substructure which should be observable. The surface brightness contours are generally elliptical and features that are seen include cold clumps, hot spiral features, and cold fronts. Profiles of emission-weighted temperature, surface brightness and emission-weighted pressure across the surface brightness discontinuities seen in one of the bimodal clusters are consistent with the cold front in Abell 2142 observed by Markevitch et al.Comment: Submitted to Monthly Notices Royal Astronomical Societ

    The baseline intracluster entropy profile from gravitational structure formation

    Full text link
    The radial entropy profile of the hot gas in clusters of galaxies tends to follow a power law in radius outside of the cluster core. Here we present a simple formula giving both the normalization and slope for the power-law entropy profiles of clusters that form in the absence of non-gravitational processes such as radiative cooling and subsequent feedback. It is based on seventy-one clusters drawn from four separate cosmological simulations, two using smoothed-particle hydrodynamics (SPH) and two using adaptive-mesh refinement (AMR), and can be used as a baseline for assessing the impact of non-gravitational processes on the intracluster medium outside of cluster cores. All the simulations produce clusters with self-similar structure in which the normalization of the entropy profile scales linearly with cluster temperature, and these profiles are in excellent agreement outside of 0.2 r_200. Because the observed entropy profiles of clusters do not scale linearly with temperature, our models confirm that non-gravitational processes are necessary to break the self-similarity seen in the simulations. However, the core entropy levels found by the two codes used here significantly differ, with the AMR code producing nearly twice as much entropy at the centre of a cluster.Comment: Accepted to MNRAS, 8 pages, 9 figure

    The Sunyaev-Zel'dovich temperature of the intracluster medium

    Get PDF
    The relativistic Sunyaev-Zel'dovich (SZ) effect offers a method, independent of X-ray, for measuring the temperature of the intracluster medium (ICM) in the hottest systems. Here, using N-body/hydrodynamic simulations of three galaxy clusters, we compare the two quantities for a non-radiative ICM, and for one that is subject both to radiative cooling and strong energy feedback from galaxies. Our study has yielded two interesting results. Firstly, in all cases, the SZ temperature is hotter than the X-ray temperature and is within ten per cent of the virial temperature of the cluster. Secondly, the mean SZ temperature is less affected by cooling and feedback than the X-ray temperature. Both these results can be explained by the SZ temperature being less sensitive to the distribution of cool gas associated with cluster substructure. A comparison of the SZ and X-ray temperatures (measured for a sample of hot clusters) would therefore yield interesting constraints on the thermodynamic structure of the intracluster gas.Comment: This version accepted for publication in MNRAS following minor revisio

    Galaxy cluster rotation revealed in the MACSIS simulations with the kinetic Sunyaev-Zeldovich effect

    Full text link
    The kinetic Sunyaev-Zeldovich (kSZ) effect has now become a clear target for ongoing and future studies of the cosmic microwave background (CMB) and cosmology. Aside from the bulk cluster motion, internal motions also lead to a kSZ signal. In this work, we study the rotational kSZ effect caused by coherent large-scale motions of the cluster medium using cluster hydrodynamic cosmological simulations. To utilise the rotational kSZ as a cosmological probe, simulations offer some of the most comprehensive data sets that can inform the modeling of this signal. In this work, we use the MACSIS data set to specifically investigate the rotational kSZ effect in massive clusters. Based on these models, we test stacking approaches and estimate the amplitude of the combined signal with varying mass, dynamical state, redshift and map-alignment geometry. We find that the dark matter, galaxy and gas spins are generally misaligned, an effect that can cause a sub-optimal estimation of the rotational kSZ effect when based on galaxy catalogues. Furthermore, we provide halo-spin-mass scaling relations that can be used to build a statistical model of the rotational kSZ. The rotational kSZ contribution, which is largest in massive unrelaxed clusters (≳\gtrsim100 μ\muK), could be relevant to studies of higher-order CMB temperature signals, such as the moving lens effect. The limited mass range of the MACSIS sample strongly motivates an extended investigation of the rotational kSZ effect in large-volume simulations to refine the modelling, particularly towards lower mass and higher redshift, and provide forecasts for upcoming cosmological CMB experiments (e.g. Simons Observatory, SKA-2) and X-ray observations (e.g. \textit{Athena}/X-IFU).Comment: Submitted to Monthly Notices of the Royal Astronomical Society. Comments and discussions are welcome. Data and codes can be found at https://github.com/edoaltamura/macsis-cosmosi

    On the cross-section of Dark Matter using substructure infall into galaxy clusters

    Full text link
    We develop a statistical method to measure the interaction cross-section of Dark Matter, exploiting the continuous minor merger events in which small substructures fall into galaxy clusters. We find that by taking the ratio of the distances between the galaxies and Dark Matter, and galaxies and gas in accreting sub-halos, we form a quantity that can be statistically averaged over a large sample of systems whilst removing any inherent line-of-sight projections. In order to interpret this ratio as a cross-section of Dark Matter we derive an analytical description of sub-halo infall which encompasses; the force of the main cluster potential, the drag on a gas sub-halo, a model for Dark Matter self-interactions and the resulting sub-halo drag, the force on the gas and galaxies due to the Dark Matter sub-halo potential, and finally the buoyancy on the gas and Dark Matter. We create mock observations from cosmological simulations of structure formation and find that collisionless Dark Matter becomes physically separated from X-ray gas by up to 20h^-1 kpc. Adding realistic levels of noise, we are able to predict achievable constraints from observational data. Current archival data should be able to detect a difference in the dynamical behaviour of Dark Matter and standard model particles at 6 sigma, and measure the total interaction cross-section sigma/m with 68% confidence limits of +/- 1cm2g^-1. We note that this method is not restricted by the limited number of major merging events and is easily extended to large samples of clusters from future surveys which could potentially push statistical errors to 0.1cm^2g^-1.Comment: 14 pages, 11 figure

    Relativistic SZ temperature scaling relations of groups and clusters derived from the BAHAMAS and MACSIS simulations

    Get PDF
    The Sunyaev-Zeldovich (SZ) effect has long been recognized as a powerful cosmological probe. Using the BAHAMAS and MACSIS simulations to obtain >10,000>10,000 simulated galaxy groups and clusters, we compute three temperature measures and quantify the differences between them. The first measure is related to the X-ray emission of the cluster, while the second describes the non-relativistic thermal SZ (tSZ) effect. The third measure determines the lowest order relativistic correction to the tSZ signal, which is seeing increased observational relevance. Our procedure allows us to accurately model the relativistic SZ (rSZ) contribution and we show that a ≳10%−40%\gtrsim 10\%-40\% underestimation of this rSZ cluster temperature is expected when applying standard X-ray relations. The correction also exhibits significant mass and redshift evolution, as we demonstrate here. We present the mass dependence of each temperature measure alongside their profiles and a short analysis of the temperature dispersion as derived from the aforementioned simulations. We also discuss a new relation connecting the temperature and Compton-yy parameter, which can be directly used for rSZ modelling. Simple fits to the obtained scaling relations and profiles are provided. These should be useful for future studies of the rSZ effect and its relevance to cluster cosmology.Comment: Accepted by MNRA
    • …
    corecore