305 research outputs found

    Pre-Pennsylvanian Rocks of Aquidneck and Conanicut Islands, Rhode Island

    Get PDF
    Guidebook for field trips to the Boston area and vicinity : 68th annual meeting, New England Intercollegiate Geological Conference, October 8-10, 1976: Trip B-1

    Tracking along-arc sediment inputs to the Aleutian arc using thallium isotopes.

    Get PDF
    Sediment transport from the subducted slab to the mantle wedge is an important process in understanding the chemical and physical conditions of arc magma generation. The Aleutian arc offers an excellent opportunity to study sediment transport processes because the subducted sediment flux varies systematically along strike (Kelemen et al., 2003) and many lavas exhibit unambiguous signatures of sediment addition to the sub-arc mantle (Morris et al., 1990). However, the exact sediment contribution to Aleutian lavas and how these sediments are transported from the slab to the surface are still debated. Thallium (Tl) isotope ratios have great potential to distinguish sediment fluxes in subduction zones because pelagic sediments and low-temperature altered oceanic crust are highly enriched in Tl and display heavy and light Tl isotope compositions, respectively, compared with the upper mantle and continental crust. Here, we investigate the Tl isotope composition of lavas covering almost the entire Aleutian arc a well as sediments outboard of both the eastern (DSDP Sites 178 and 183) and central (ODP Hole 886C) portions of the arc. Sediment Tl isotope compositions change systematically from lighter in the Eastern to heavier in the Central Aleutians reflecting a larger proportion of pelagic sediments when distal from the North American continent. Lavas in the Eastern and Central Aleutians mirror this systematic change to heavier Tl isotope compositions to the west, which shows that the subducted sediment composition is directly translated to the arc east of Kanaga Island. Moreover, quantitative mixing models of Tl and Pb, Sr and Nd isotopes reveal that bulk sediment transfer of āˆ¼0.6ā€“1.0% by weight in the Eastern Aleutians and āˆ¼0.2ā€“0.6% by weight in the Central Aleutians can account for all four isotope systems. Bulk mixing models, however, require that fractionation of trace element ratios like Ce/Pb, Cs/Tl, and Sr/Nd in the Central and Eastern Aleutians occurs after the sediment component was mixed with the mantle wedge. Models of Sr and Nd isotopes that involve sediment melting require either high degrees of sediment melting (>50%), in which case trace element ratios like Ce/Pb, Cs/Tl, and Sr/Nd of Aleutian lavas need to be produced after mixing with the mantle, or significant fluid additions from the underlying oceanic crust with Sr and Nd isotope compositions indistinguishable from the mantle wedge as well as high Sr/Nd ratios similar to that of low (<20%) degree sediment melts. Thallium isotope data from Western Aleutian lavas exhibit compositions slightly lighter than the upper mantle, which implies a negligible sediment flux at this location and probably involvement of low-temperature altered oceanic crust in the generation of these lavas. In general, the lightest Tl isotope compositions are observed for the highest Sr/Y ratios and most unradiogenic Sr and Pb isotope compositions, which is broadly consistent with derivation of these lavas via melting of eclogitized altered oceanic crust

    Full genome re-sequencing reveals a novel circadian clock mutation in Arabidopsis

    Get PDF
    Map based cloning in Arabidopsis thaliana can be a difficult and time-consuming process, specifically if the phenotype is subtle and scoring labour intensive. Here, we have re-sequenced the 120-Mb genome of a novel Arabidopsis clock mutant early bird (ebi-1) in Wassilewskija (Ws-2). We demonstrate the utility of sequencing a backcrossed line in limiting the number of SNPs considered. We identify a SNP in the gene AtNFXL-2 as the likely cause of the ebi-1 phenotype

    Molecular tools for bathing water assessment in Europe:Balancing social science research with a rapidly developing environmental science evidence-base

    Get PDF
    The use of molecular tools, principally qPCR, versus traditional culture-based methods for quantifying microbial parameters (e.g., Fecal Indicator Organisms) in bathing waters generates considerable ongoing debate at the science-policy interface. Advances in science have allowed the development and application of molecular biological methods for rapid (~2Ā h) quantification of microbial pollution in bathing and recreational waters. In contrast, culture-based methods can take between 18 and 96Ā h for sample processing. Thus, molecular tools offer an opportunity to provide a more meaningful statement of microbial risk to water-users by providing near-real-time information enabling potentially more informed decision-making with regard to water-based activities. However, complementary studies concerning the potential costs and benefits of adopting rapid methods as a regulatory tool are in short supply. We report on findings from an international Working Group that examined the breadth of social impacts, challenges, and research opportunities associated with the application of molecular tools to bathing water regulations

    Spectroscopic Analysis of Au-Cu Alloy Nanoparticles of Various Compositions Synthesized by a Chemical Reduction Method

    Get PDF
    Au-Cu alloy nanoparticles were synthesized by a chemical reduction method. Five samples having different compositions of Au and Cu (Au-Cu 3ā€‰:ā€‰1, Au-Cu 2ā€‰:ā€‰1, Au-Cu 1ā€‰:ā€‰1, Au-Cu 1ā€‰:ā€‰2, and Au-Cu 1ā€‰:ā€‰3) were prepared. The newly synthesized nanoparticles were characterized by electronic absorption, fluorescence, and X-ray diffraction spectroscopy (XRD). These alloy nanoparticles were also analyzed by SEM and TEM. The particle size was determined by SEM and TEM and calculated by Debye Scherrerā€™s equation as well. The results revealed that the average diameter of nanoparticles gets lowered from 80 to 65ā€‰nm as the amount of Cu is increased in alloy nanoparticles. Some physical properties were found to change with change in molar composition of Au and Cu. Most of the properties showed optimum values for Au-Cu alloy nanoparticles of 1ā€‰:ā€‰3. Cu in Au-Cu alloy caused decrease in the intensity of the emission peak and acted as a quencher. The fluorescence data was utilized for the evaluation of number of binding sites, total number of atoms in alloy nanoparticle, binding constant, and free energy of binding while morphology was deduced from SEM and TEM

    A globally relevant change taxonomy and evidence-based change framework for land monitoring

    Get PDF
    A globally relevant and standardized taxonomy and framework for consistently describing land cover change based on evidence is presented, which makes use of structured land cover taxonomies and is underpinned by the Driver-Pressure-State-Impact-Response (DPSIR) framework. The Global Change Taxonomy currently lists 246 classes based on the notation 'impact (pressure)', with this encompassing the consequence of observed change and associated reason(s), and uses scale-independent terms that factor in time. Evidence for different impacts is gathered through temporal comparison (e.g., days, decades apart) of land cover classes constructed and described from Environmental Descriptors (EDs; state indicators) with pre-defined measurement units (e.g., m, %) or categories (e.g., species type). Evidence for pressures, whether abiotic, biotic or human-influenced, is similarly accumulated, but EDs often differ from those used to determine impacts. Each impact and pressure term is defined separately, allowing flexible combination into 'impact (pressure)' categories, and all are listed in an openly accessible glossary to ensure consistent use and common understanding. The taxonomy and framework are globally relevant and can reference EDs quantified on the ground, retrieved/classified remotely (from ground-based, airborne or spaceborne sensors) or predicted through modelling. By providing capacity to more consistently describe change processes-including land degradation, desertification and ecosystem restoration-the overall framework addresses a wide and diverse range of local to international needs including those relevant to policy, socioeconomics and land management. Actions in response to impacts and pressures and monitoring towards targets are also supported to assist future planning, including impact mitigation actions

    Angiogenesis induced by tumor necrosis factor-agr; is mediated by Ī±4 integrins

    Full text link
    Tumor necrosis factor-Ī± (TNF-Ī±) and fibroblast growth factor-2 (FGF-2 or bFGF) are potent stimulators of angiogenesis. TNF-Ī±, but not FGF-2, can induce the expression of vascular cell adhesion molecule-1 (VCAM-1) on the surface of endothelial cells. The soluble form of VCAM-1 has recently been demonstrated to function as an angiogenic mediator. Here we demonstrate that monoclonal antibodies directed against VCAM-1 or its Ī±4 integrin counter-receptor inhibited TNF-Ī±-induced endothelial cell migration in vitro. Angiogenesis induced in vivo in rat corneas by TNF-Ī± was inhibited by a neutralizing antibody directed against the rat Ī±4 integrin subunit. A peptide antagonist of the a4 integrins blocked TNF-Ī±-induced endothelial cell migration in vitro and angiogenesis in rat corneas in vivo. No inhibition by the antibodies or peptide antagonist was observed either in vitro or in vivo when FGF-2 was used as the stimulus. The peptide antagonist did not inhibit TNF-a binding to its receptor nor did it block the function of Ī±vĪ²3, an integrin previously implicated in TNF-a and FGF-2 mediated angiogenesis. These results demonstrate that angiogenic processes induced by TNF-Ī± are mediated in part by agr;4 integrins possibly by a mechanism involving the induction of soluble VCAM-1.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41761/1/10456_2004_Article_188219.pd

    A globally relevant change taxonomy and evidence-based change framework for land monitoring

    Get PDF
    A globally relevant and standardized taxonomy and framework for consistently describing land cover change based on evidence is presented, which makes use of structured land cover taxonomies and is underpinned by the Driver-Pressure-Stateļæ½Impact-Response (DPSIR) framework. The Global Change Taxonomy currently lists 246 classes based on the notation ā€˜impact (pressure)ā€™, with this encompassing the consequence of observed change and associated reason(s), and uses scale-independent terms that factor in time. Evidence for different impacts is gathered through temporal comparison (e.g., days, decades apart) of land cover classes constructed and described from Environmental Descriptors (EDs; state indicators) with pre-defined measurement units (e.g., m, %) or categories (e.g., species type). Evidence for pressures, whether abiotic, biotic or human-influenced, is similarly accumulated, but EDs often differ from those used to determine impacts. Each impact and pressure term is defined separately, allowing flexible combination into ā€˜impact (pressure)ā€™ categories, and all are listed in an openly accessible glossary to ensure consistent use and common understanding. The taxonomy and framework are globally relevant and can reference EDs quantified on the ground, retrieved/classified remotely (from groundbased, airborne or spaceborne sensors) or predicted through modelling. By providing capacity to more consistently describe change processesā€”including land degradation, desertification and ecosystem restorationā€”the overall framework addresses a wide and diverse range of local to international needs including those relevant to policy, socioeconomics and land management. Actions in response to impacts and pressures and monitoring towards targets are also supported to assist future planning, including impact mitigation actions
    • ā€¦
    corecore