105 research outputs found

    A Hybrid Gyrokinetic Ion and Isothermal Electron Fluid Code for Astrophysical Plasma

    Full text link
    This paper describes a new code for simulating astrophysical plasmas that solves a hybrid model composed of gyrokinetic ions (GKI) and an isothermal electron fluid (ITEF) [A. Schekochihin et al., Astrophys. J. Suppl. \textbf{182}, 310 (2009)]. This model captures ion kinetic effects that are important near the ion gyro-radius scale while electron kinetic effects are ordered out by an electron-ion mass ratio expansion. The code is developed by incorporating the ITEF approximation into {\tt AstroGK}, an Eulerian δf\delta f gyrokinetics code specialized to a slab geometry [R. Numata et al., J. Compute. Pays. \textbf{229}, 9347 (2010)]. The new code treats the linear terms in the ITEF equations implicitly while the nonlinear terms are treated explicitly. We show linear and nonlinear benchmark tests to prove the validity and applicability of the simulation code. Since the fast electron timescale is eliminated by the mass ratio expansion, the Courant--Friedrichs--Lewy condition is much less restrictive than in full gyrokinetic codes; the present hybrid code runs ∼2mi/me∼100\sim 2\sqrt{m_\mathrm{i}/m_\mathrm{e}} \sim 100 times faster than {\tt AstroGK}\ with a single ion species and kinetic electrons where mi/mem_\mathrm{i}/m_\mathrm{e} is the ion-electron mass ratio. The improvement of the computational time makes it feasible to execute ion scale gyrokinetic simulations with a high velocity space resolution and to run multiple simulations to determine the dependence of turbulent dynamics on parameters such as electron--ion temperature ratio and plasma beta

    Thermal disequilibration of ions and electrons by collisionless plasma turbulence

    Full text link
    Does overall thermal equilibrium exist between ions and electrons in a weakly collisional, magnetised, turbulent plasma---and, if not, how is thermal energy partitioned between ions and electrons? This is a fundamental question in plasma physics, the answer to which is also crucial for predicting the properties of far-distant astronomical objects such as accretion discs around black holes. In the context of discs, this question was posed nearly two decades ago and has since generated a sizeable literature. Here we provide the answer for the case in which energy is injected into the plasma via Alfv\'enic turbulence: collisionless turbulent heating typically acts to disequilibrate the ion and electron temperatures. Numerical simulations using a hybrid fluid-gyrokinetic model indicate that the ion-electron heating-rate ratio is an increasing function of the thermal-to-magnetic energy ratio, βi\beta_\mathrm{i}: it ranges from ∼0.05\sim0.05 at βi=0.1\beta_\mathrm{i}=0.1 to at least 3030 for βi≳10\beta_\mathrm{i} \gtrsim 10. This energy partition is approximately insensitive to the ion-to-electron temperature ratio Ti/TeT_\mathrm{i}/T_\mathrm{e}. Thus, in the absence of other equilibrating mechanisms, a collisionless plasma system heated via Alfv\'enic turbulence will tend towards a nonequilibrium state in which one of the species is significantly hotter than the other, viz., hotter ions at high βi\beta_\mathrm{i}, hotter electrons at low βi\beta_\mathrm{i}. Spectra of electromagnetic fields and the ion distribution function in 5D phase space exhibit an interesting new magnetically dominated regime at high βi\beta_i and a tendency for the ion heating to be mediated by nonlinear phase mixing ("entropy cascade") when βi≲1\beta_\mathrm{i}\lesssim1 and by linear phase mixing (Landau damping) when $\beta_\mathrm{i}\gg1

    Hall magnetohydrodynamics in a relativistically strong mean magnetic field

    Full text link
    This Letter presents a magnetohydrodynamic model that describes the small-amplitude fluctuations with wavelengths comparable to ion inertial length in the presence of a relativistically strong mean magnetic field. The set of derived equations is virtually identical to the non-relativistic Hall reduced magnetohydrodynamics (Schekochihin et al. 2019), differing only by a few constants that take into account the relativistic corrections. This means that all the properties of kinetic Alfv\'en turbulence and ion cyclotron turbulence inherent in the non-relativistic Hall regime persist unchanged even in a magnetically dominated regime

    Comparison of Entropy Production Rates in Two Different Types of Self-organized Flows: B\'{e}nard Convection and Zonal flow

    Full text link
    Entropy production rate (EPR) is often effective to describe how a structure is self-organized in a nonequilibrium thermodynamic system. The "minimum EPR principle" is widely applicable to characterizing self-organized structures, but is sometimes disproved by observations of "maximum EPR states." Here we delineate a dual relation between the minimum and maximum principles; the mathematical representation of the duality is given by a Legendre transformation. For explicit formulation, we consider heat transport in the boundary layer of fusion plasma [Phys. Plasmas {\bf 15}, 032307 (2008)]. The mechanism of bifurcation and hysteresis (which are the determining characteristics of the so-called H-mode, a self-organized state of reduced thermal conduction) is explained by multiple tangent lines to a pleated graph of an appropriate thermodynamic potential. In the nonlinear regime, we have to generalize Onsager's dissipation function. The generalized function is no longer equivalent to EPR; then EPR ceases to be the determinant of the operating point, and may take either minimum or maximum values depending on how the system is driven
    • …
    corecore