27 research outputs found

    Molecular mechanism for 3:1 subunit stoichiometry of rod cyclic nucleotide-gated ion channels

    Get PDF
    Molecular determinants of ion channel tetramerization are well characterized, but those involved in heteromeric channel assembly are less clearly understood. The heteromeric composition of native channels is often precisely controlled. Cyclic nucleotide-gated (CNG) channels from rod photoreceptors exhibit a 3:1 stoichiometry of CNGA1 and CNGB1 subunits that tunes the channels for their specialized role in phototransduction. Here we show, using electrophysiology, fluorescence, biochemistry, and X-ray crystallography, that the mechanism for this controlled assembly is the formation of a parallel 3-helix coiled-coil domain of the carboxy-terminal leucine zipper region of CNGA1 subunits, constraining the channel to contain three CNGA1 subunits, followed by preferential incorporation of a single CNGB1 subunit. Deletion of the carboxy-terminal leucine zipper domain relaxed the constraint and permitted multiple CNGB1 subunits in the channel. The X-ray crystal structures of the parallel 3-helix coiled-coil domains of CNGA1 and CNGA3 subunits were similar, suggesting that a similar mechanism controls the stoichiometry of cone CNG channels

    The associations between Parkinson’s disease and cancer: the plot thickens

    Full text link

    Molecular and functional properties of P2X receptors—recent progress and persisting challenges

    Full text link

    High failure rate of a modern, proximally roughened, cemented stem for total hip arthroplasty

    No full text
    The role of surface finish on the survivorship of cemented femoral stems continues to be debated. A total of 34 proximally roughened cemented stems were implanted in 33 consecutive patients undergoing total hip arthroplasty by a single surgeon. An alarmingly high failure rate was observed, prompting a retrospective chart review, analysis of radiographs, and evaluation of retrieved stems and pathological specimens. Nineteen patients were available with more than two years follow-up. Of these 19 patients, nine stems had failed (47%) due to severe osteolysis and stem loosening. Failures were significantly more common in the male gender (p<0.005), and young (p=0.05), tall (p<0.002), and heavy patients (p<0.004). All failed revised hips showed severe metallosis, with both gross and microscopic evidence of metallic shedding from the stems. Our findings suggest that this proximally roughened stem is susceptible to early failure. Failure is characterized by stem debonding, subsidence within the cement mantle, shedding of metallic and cement particles due to fretting, and rapidly progressive osteolysis. These findings have been observed with other rough surface finish cemented stems

    A Stable Human-Cell System Overexpressing Cystic Fibrosis Transmembrane Conductance Regulator Recombinant Protein at the Cell Surface

    No full text
    Recent human clinical trials results demonstrated successful treatment for certain genetic forms of cystic fibrosis (CF). To extend treatment opportunities to those afflicted with other genetic forms of CF disease, structural and biophysical characterization of CF transmembrane conductance regulator (CFTR) is urgently needed. In this study, CFTR was modified with various tags, including a His(10) purification tag, the SUMOstar (SUMO*) domain, an extracellular FLAG epitope, or an enhanced green fluorescent protein (EGFP), each alone or in various combinations. Expressed in HEK293 cells, recombinant CFTR proteins underwent complex glycosylation, compartmentalized with the plasma membrane, and exhibited regulated chloride-channel activity with only modest alterations in channel conductance and gating kinetics. Surface CFTR expression level was enhanced by the presence of SUMO* on the N-terminus. Quantitative mass-spectrometric analysis indicated approximately 10% of the total recombinant CFTR (SUMO*-CFTR(FLAG)-EGFP) localized to the plasma membrane. Trial purification using dodecylmaltoside for membrane protein extraction reproducibly recovered 178 ± 56 μg SUMO*-CFTR(FLAG)-EGFP per billion cells at 80% purity. Fluorescence size-exclusion chromatography indicated purified CFTR was monodisperse. These findings demonstrate a stable mammalian cell expression system capable of producing human CFTR of sufficient quality and quantity to augment futrure CF drug discovery efforts, including biophysical and structural studies
    corecore