21 research outputs found

    Loss of Pikfyve causes Transdifferentiation of Dictyostelium Spores into Basal Disc Cells

    Get PDF
    The 1-phosphatidylinositol-3-phosphate 5-kinase PIKfyve generates PtdIns3,5P2 on late phagolysosomes, which by recruiting the scission protein Atg18, results in their fragmentation in the normal course of endosome processing. Loss of PIKfyve function causes cellular hypervacuolization in eukaryotes and organ failure in humans. We identified pikfyve as the defective gene in a Dictyostelium mutant that failed to form spores. The amoebas normally differentiated into prespore cells and initiated spore coat protein synthesis in Golgi-derived prespore vesicles. However, instead of exocytosing, the prespore vesicles fused into the single vacuole that typifies the stalk and basal disc cells that support the spores. This process was accompanied by stalk wall biosynthesis, loss of spore gene expression and overexpression of ecmB, a basal disc and stalk-specific gene, but not of the stalk-specific genes DDB_G0278745 and DDB_G0277757. Transdifferentiation of prespore into stalk-like cells was previously observed in mutants that lack early autophagy genes, like atg5, atg7, and atg9. However, while autophagy mutants specifically lacked cAMP induction of prespore gene expression, pikfyve(−) showed normal early autophagy and prespore induction, but increased in vitro induction of ecmB. Combined, the data suggest that the Dictyostelium endosomal system influences cell fate by acting on cell type specific gene expression

    Two <em>Dictyostelium</em> Tyrosine Kinase-Like kinases function in parallel, stress-induced STAT activation pathways

    Get PDF
    When Dictyostelium cells are hyperosmotically stressed, STATc is activated by tyrosine phosphorylation. Unusually, activation is regulated by serine phosphorylation and consequent inhibition of a tyrosine phosphatase: PTP3. The identity of the cognate tyrosine kinase is unknown, and we show that two tyrosine kinase–like (TKL) enzymes, Pyk2 and Pyk3, share this function; thus, for stress-induced STATc activation, single null mutants are only marginally impaired, but the double mutant is nonactivatable. When cells are stressed, Pyk2 and Pyk3 undergo increased autocatalytic tyrosine phosphorylation. The site(s) that are generated bind the SH2 domain of STATc, and then STATc becomes the target of further kinase action. The signaling pathways that activate Pyk2 and Pyk3 are only partially overlapping, and there may be a structural basis for this difference because Pyk3 contains both a TKL domain and a pseudokinase domain. The latter functions, like the JH2 domain of metazoan JAKs, as a negative regulator of the kinase domain. The fact that two differently regulated kinases catalyze the same phosphorylation event may facilitate specific targeting because under stress, Pyk3 and Pyk2 accumulate in different parts of the cell; Pyk3 moves from the cytosol to the cortex, whereas Pyk2 accumulates in cytosolic granules that colocalize with PTP3

    Evidence that Noncoding RNA dutA Is a Multicopy Suppressor of Dictyostelium discoideum STAT Protein Dd-STATaâ–¿

    No full text
    Dd-STATa, a Dictyostelium discoideum homologue of metazoan STAT transcription factors, is necessary for culmination. We created a mutant strain with partial Dd-STATa activity and used it to screen for unlinked suppressor genes. We screened approximately 450,000 clones from a slug-stage cDNA library for their ability to rescue the culmination defect when overexpressed. There were 12 multicopy suppressors of Dd-STATa, of which 4 encoded segments of a known noncoding RNA, dutA. Expression of dutA is specific to the pstA zone, the region where Dd-STATa is activated. In suppressed strains the expression patterns of several putative Dd-STATa target genes become similar to the wild-type strain. In addition, the amount of the tyrosine-phosphorylated form of Dd-STATa is significantly increased in the suppressed strain. These results indicate that partial copies of dutA may act upstream of Dd-STATa to regulate tyrosine phosphorylation by an unknown mechanism

    Generation of deletions and precise point mutations in Dictyostelium discoideum using the CRISPR nickase.

    No full text
    The CRISPR/Cas9 system enables targeted genome modifications across a range of eukaryotes. Although we have reported that transient introduction of all-in-one vectors that express both Cas9 and sgRNAs can efficiently induce multiple gene knockouts in Dictyostelium discoideum, concerns remain about off-target effects and false-positive amplification during mutation detection via PCR. To minimise these effects, we modified the system to permit gene deletions of greater than 1 kb via use of paired sgRNAs and Cas9 nickase. An all-in-one vector expressing the Cas9 nickase and sgRNAs was transiently introduced into D. discoideum, and the resulting mutants showed long deletions with a relatively high efficiency of 10-30%. By further improving the vector, a new dual sgRNA expression vector was also constructed to allow simultaneous insertion of two sgRNAs via one-step cloning. By applying this system, precise point mutations and genomic deletions were generated in the target locus via simultaneous introduction of the vector and a single-stranded oligonucleotide template without integrating a drug resistance cassette. These systems enable simple and straightforward genome editing that requires high specificity, and they can serve as an alternative to the conventional homologous recombination-based gene disruption method in D. discoideum

    Recent Advances in CRISPR/Cas9-Mediated Genome Editing in Dictyostelium

    No full text
    In the last 30 years, knockout of target genes via homologous recombination has been widely performed to clarify the physiological functions of proteins in Dictyostelium. As of late, CRISPR/Cas9-mediated genome editing has become a versatile tool in various organisms, including Dictyostelium, enabling rapid high-fidelity modification of endogenous genes. Here we reviewed recent progress in genome editing in Dictyostelium and summarised useful CRISPR vectors that express sgRNA and Cas9, including several microorganisms. Using these vectors, precise genome modifications can be achieved within 2&ndash;3 weeks, beginning with the design of the target sequence. Finally, we discussed future perspectives on the use of CRISPR/Cas9-mediated genome editing in Dictyostelium

    RNGB: a Dictyostelium RING finger protein that is specifically located in maturing spore cells

    Get PDF
    AbstractThe RING finger is a form of zinc finger motif found in proteins of widely varying biological function. The Dictyostelium RNGB protein contains a RING finger and also a K-box, a sequence motif found in several plant homeotic proteins. The rngB mRNA is present at low concentration in growing cells and gradually increases in abundance throughout development. However, the RNGB protein is not detected until culmination and we present evidence that suggests it is translationally regulated. The protein is specifically localised in maturing spore cells and is cytoplasmic, suggesting that the RING finger does not function as a DNA binding domain
    corecore