150 research outputs found
Higgs friends and counterfeits at hadron colliders
We consider the possibility of "Higgs counterfeits" - scalars that can be
produced with cross sections comparable to the SM Higgs, and which decay with
identical relative observable branching ratios, but which are nonetheless not
responsible for electroweak symmetry breaking. We also consider a related
scenario involving "Higgs friends," fields similarly produced through gg fusion
processes, which would be discovered through diboson channels WW, ZZ, gamma
gamma, or even gamma Z, potentially with larger cross sections times branching
ratios than for the Higgs. The discovery of either a Higgs friend or a Higgs
counterfeit, rather than directly pointing towards the origin of the weak
scale, would indicate the presence of new colored fields necessary for the
sizable production cross section (and possibly new colorless but electroweakly
charged states as well, in the case of the diboson decays of a Higgs friend).
These particles could easily be confused for an ordinary Higgs, perhaps with an
additional generation to explain the different cross section, and we emphasize
the importance of vector boson fusion as a channel to distinguish a Higgs
counterfeit from a true Higgs. Such fields would naturally be expected in
scenarios with "effective Z's," where heavy states charged under the SM produce
effective charges for SM fields under a new gauge force. We discuss the
prospects for discovery of Higgs counterfeits, Higgs friends, and associated
charged fields at the LHC.Comment: 27 pages, 5 figures. References added and typos fixe
The Arthrobacter Species FB24 Arth_1007 (DnaB) Intein Is a Pseudogene
An Arthrobacter species FB24 gene (locus tag Arth_1007) was previously annotated as a putative intein-containing DnaB helicase of phage origin (Arsp-FB24 DnaB intein). However, it is not a helicase gene because the sequence similarity is limited to inteins. In fact, the flanking exteins total only 66 amino acids. Therefore, the intein should be referred to as the Arsp-FB24 Arth_1007 intein. The Arsp-FB24 Arth_1007 intein failed to splice in its native precursor and in a model precursor. We previously noted that the Arsp-FB24 Arth_1007 intein is the only putative Class 3 intein that is missing the catalytically essential Cys at position 4 of intein Motif F, which is one of the three defining signature residues of this class. Additionally, a catalytically essential His in position 10 of intein Motif B is also absent; this His is the most conserved residue amongst all inteins. Splicing activity was not rescued when these two catalytically important positions were βrevertedβ back to their consensus residues. This study restores the unity of the Class 3 intein signature sequence in active inteins by demonstrating that the Arsp-FB24 Arth_1007 intein is an inactive pseudogene
Simultaneously Hermaphroditic Shrimp Use Lipophilic Cuticular Hydrocarbons as Contact Sex Pheromones
Successful mating is essentially a consequence of making the right choices at the correct time. Animals use specific strategies to gain information about a potential mate, which is then applied to decision-making processes. Amongst the many informative signals, odor cues such as sex pheromones play important ecological roles in coordinating mating behavior, enabling mate and kin recognition, qualifying mate choice, and preventing gene exchange among individuals from different populations and species. Despite overwhelming behavioral evidence, the chemical identity of most cues used in aquatic organisms remains unknown and their impact and omnipresence have not been fully recognized. In many crustaceans, including lobsters and shrimps, reproduction happens through a cascade of events ranging from initial attraction to formation of a mating pair eventually leading to mating. We examined the hypothesis that contact pheromones on the female body surface of the hermaphroditic shrimp Lysmata boggessi are of lipophilic nature, and resemble insect cuticular hydrocarbon contact cues. Via chemical analyses and behavioural assays, we show that newly molted euhermaphrodite-phase shrimp contain a bouquet of odor compounds. Of these, (Z)-9-octadecenamide is the key odor with hexadecanamide and methyl linoleate enhancing the bioactivity of the pheromone blend. Our results show that in aquatic systems lipophilic, cuticular hydrocarbon contact sex pheromones exist; this raises questions on how hydrocarbon contact signals evolved and how widespread these are in the marine environment
Chromatin Remodeling Pathways in Smooth Muscle Cell Differentiation, and Evidence for an Integral Role for p300
Phenotypic alteration of vascular smooth muscle cells (SMC) in response to injury or inflammation is an essential component of vascular disease. Evidence suggests that this process is dependent on epigenetic regulatory processes. P300, a histone acetyltransferase (HAT), activates crucial muscle-specific promoters in terminal (non-SMC) myocyte differentiation, and may be essential to SMC modulation as well.We performed a subanalysis examining transcriptional time-course microarray data obtained using the A404 model of SMC differentiation. Numerous chromatin remodeling genes (up to 62% of such genes on our array platform) showed significant regulation during differentiation. Members of several chromatin-remodeling families demonstrated involvement, including factors instrumental in histone modification, chromatin assembly-disassembly and DNA silencing, suggesting complex, multi-level systemic epigenetic regulation. Further, trichostatin A, a histone deacetylase inhibitor, accelerated expression of SMC differentiation markers in this model. Ontology analysis indicated a high degree of p300 involvement in SMC differentiation, with 60.7% of the known p300 interactome showing significant expression changes. Knockdown of p300 expression accelerated SMC differentiation in A404 cells and human SMCs, while inhibition of p300 HAT activity blunted SMC differentiation. The results suggest a central but complex role for p300 in SMC phenotypic modulation.Our results support the hypothesis that chromatin remodeling is important for SMC phenotypic switching, and detail wide-ranging involvement of several epigenetic modification families. Additionally, the transcriptional coactivator p300 may be partially degraded during SMC differentiation, leaving an activated subpopulation with increased HAT activity and SMC differentiation-gene specificity
EB1 Is Required for Spindle Symmetry in Mammalian Mitosis
Most information about the roles of the adenomatous polyposis coli protein (APC) and its binding partner EB1 in mitotic cells has come from siRNA studies. These suggest functions in chromosomal segregation and spindle positioning whose loss might contribute to tumourigenesis in cancers initiated by APC mutation. However, siRNA-based approaches have drawbacks associated with the time taken to achieve significant expression knockdown and the pleiotropic effects of EB1 and APC gene knockdown. Here we describe the effects of microinjecting APC- or EB1- specific monoclonal antibodies and a dominant-negative EB1 protein fragment into mammalian mitotic cells. The phenotypes observed were consistent with the roles proposed for EB1 and APC in chromosomal segregation in previous work. However, EB1 antibody injection also revealed two novel mitotic phenotypes, anaphase-specific cortical blebbing and asymmetric spindle pole movement. The daughters of microinjected cells displayed inequalities in microtubule content, with the greatest differences seen in the products of mitoses that showed the severest asymmetry in spindle pole movement. Daughters that inherited the least mobile pole contained the fewest microtubules, consistent with a role for EB1 in processes that promote equality of astral microtubule function at both poles in a spindle. We propose that these novel phenotypes represent APC-independent roles for EB1 in spindle pole function and the regulation of cortical contractility in the later stages of mitosis. Our work confirms that EB1 and APC have important mitotic roles, the loss of which could contribute to CIN in colorectal tumour cells
Direct stau production at hadron colliders in cosmologically motivated scenarios
We calculate dominant cross section contributions for stau pair production at
hadron colliders within the MSSM, taking into account left-right mixing of the
stau eigenstates. We find that b-quark annihilation and gluon fusion can
enhance the cross sections by more than one order of magnitude with respect to
the Drell-Yan predictions. These additional production channels are not yet
included in the common Monte Carlo analysis programs and have been neglected in
experimental analyses so far. For long-lived staus, we investigate differential
distributions and prospects for their stopping in the collider detectors. New
possible strategies are outlined to determine the mass and width of the heavy
CP-even Higgs boson H0. Scans of the relevant regions in the CMSSM are
performed and predictions are given for the current experiments at the LHC and
the Tevatron. The obtained insights allow us to propose collider tests of
cosmologically motivated scenarios with long-lived staus that have an
exceptionally small thermal relic abundance.Comment: 49 pages, 13 figures; v2: references added, typos corrected, text
streamlined, results unchange
New insights into the synergism of nucleoside analogs with radiotherapy
Nucleoside analogs have been frequently used in combination with radiotherapy in the clinical setting, as it has long been understood that inhibition of DNA repair pathways is an important means by which many nucleoside analogs synergize. Recent advances in our understanding of the structure and function of deoxycytidine kinase (dCK), a critical enzyme required for the anti-tumor activity for many nucleoside analogs, have clarified the mechanistic role this kinase plays in chemo- and radio-sensitization. A heretofore unrecognized role of dCK in the DNA damage response and cell cycle machinery has helped explain the synergistic effect of these agents with radiotherapy. Since most currently employed nucleoside analogs are primarily activated by dCK, these findings lend fresh impetus to efforts focused on profiling and modulating dCK expression and activity in tumors. In this review we will briefly review the pharmacology and biochemistry of the major nucleoside analogs in clinical use that are activated by dCK. This will be followed by discussions of recent advances in our understanding of dCK activation via post-translational modifications in response to radiation and current strategies aimed at enhancing this activity in cancer cells
Signal transduction-related responses to phytohormones and environmental challenges in sugarcane
BACKGROUND: Sugarcane is an increasingly economically and environmentally important C4 grass, used for the production of sugar and bioethanol, a low-carbon emission fuel. Sugarcane originated from crosses of Saccharum species and is noted for its unique capacity to accumulate high amounts of sucrose in its stems. Environmental stresses limit enormously sugarcane productivity worldwide. To investigate transcriptome changes in response to environmental inputs that alter yield we used cDNA microarrays to profile expression of 1,545 genes in plants submitted to drought, phosphate starvation, herbivory and N(2)-fixing endophytic bacteria. We also investigated the response to phytohormones (abscisic acid and methyl jasmonate). The arrayed elements correspond mostly to genes involved in signal transduction, hormone biosynthesis, transcription factors, novel genes and genes corresponding to unknown proteins. RESULTS: Adopting an outliers searching method 179 genes with strikingly different expression levels were identified as differentially expressed in at least one of the treatments analysed. Self Organizing Maps were used to cluster the expression profiles of 695 genes that showed a highly correlated expression pattern among replicates. The expression data for 22 genes was evaluated for 36 experimental data points by quantitative RT-PCR indicating a validation rate of 80.5% using three biological experimental replicates. The SUCAST Database was created that provides public access to the data described in this work, linked to tissue expression profiling and the SUCAST gene category and sequence analysis. The SUCAST database also includes a categorization of the sugarcane kinome based on a phylogenetic grouping that included 182 undefined kinases. CONCLUSION: An extensive study on the sugarcane transcriptome was performed. Sugarcane genes responsive to phytohormones and to challenges sugarcane commonly deals with in the field were identified. Additionally, the protein kinases were annotated based on a phylogenetic approach. The experimental design and statistical analysis applied proved robust to unravel genes associated with a diverse array of conditions attributing novel functions to previously unknown or undefined genes. The data consolidated in the SUCAST database resource can guide further studies and be useful for the development of improved sugarcane varieties
The desmosome and pemphigus
Desmosomes are patch-like intercellular adhering junctions (βmaculae adherentesβ), which, in concert with the related adherens junctions, provide the mechanical strength to intercellular adhesion. Therefore, it is not surprising that desmosomes are abundant in tissues subjected to significant mechanical stress such as stratified epithelia and myocardium. Desmosomal adhesion is based on the Ca2+-dependent, homo- and heterophilic transinteraction of cadherin-type adhesion molecules. Desmosomal cadherins are anchored to the intermediate filament cytoskeleton by adaptor proteins of the armadillo and plakin families. Desmosomes are dynamic structures subjected to regulation and are therefore targets of signalling pathways, which control their molecular composition and adhesive properties. Moreover, evidence is emerging that desmosomal components themselves take part in outside-in signalling under physiologic and pathologic conditions. Disturbed desmosomal adhesion contributes to the pathogenesis of a number of diseases such as pemphigus, which is caused by autoantibodies against desmosomal cadherins. Beside pemphigus, desmosome-associated diseases are caused by other mechanisms such as genetic defects or bacterial toxins. Because most of these diseases affect the skin, desmosomes are interesting not only for cell biologists who are inspired by their complex structure and molecular composition, but also for clinical physicians who are confronted with patients suffering from severe blistering skin diseases such as pemphigus. To develop disease-specific therapeutic approaches, more insights into the molecular composition and regulation of desmosomes are required
- β¦