7 research outputs found

    Fabrication of binary FeSe superconducting wires by novel diffusion process

    Full text link
    We report successful fabrication of multi- and mono-core FeSe wires with high transport critical current density Jc using a simple in-situ Fe-diffusion process based on the powder-in-tube (Fe-diffusion PIT) method. The seven-core wire showed transport Jc of as high as 1027 A/cm2 at 4.2 K. The superconducting transition temperature Tczero was observed at 10.5 K in the wire-samples, which is about 2 K higher than that of bulk FeSe. The Fe-diffusion PIT method is suitable for fabricating multi-core wires of the binary FeSe superconductors with superior properties.Comment: 14 pages, 5 figure

    Superconductivity in oxygen-annealed FeTe1-xSx single crystal

    Full text link
    We investigated the S-doping-driven phase transition from antiferromagnetic to superconducting in FeTe1-xSx single crystals. The partial substitution of Te by S suppresses antiferromagnetism in Fe-square lattice. Superconductivity is induced by oxygen annealing for only FeTe1-xSx in which the long-range magnetic ordering is suppressed. To realize superconductivity in FeTe1-xSx, both S concentration enough to suppress antiferromagnetism and oxygen annealing are required. Anisotropy of superconductivity in oxygen-annealed FeTe0.886S0.114 was estimated to be 1.17.Comment: 14 pages, 7 figure

    Enhancement of superconducting properties in FeSe wires using a quenching technique

    Full text link
    Enhancements of superconducting properties were observed in FeSe wires using a quenching technique. Zero resistivity was achieved at about 10 K in quenched wires, which is about 2 K higher than that of polycrystalline FeSe bulk. Furthermore, transport Jc of quenched wires showed three times higher than that of furnace-cooled wires. In contrast, the quenched polycrystalline FeSe bulks did not show the enhancement of Tc. The quenching technique is a greatly promising for fabricating FeSe wires with high Tc and high Jc, and quenched FeSe wires have high potential for superconducting wire applications

    Transport properties and microstructure of mono- and seven-core wires of FeSe1-xTex superconductor by Fe-diffusion powder-in-tube method

    Full text link
    We report the successful fabrication of mono- and seven-core superconducting wires of FeSe1-xTex using an in-situ Fe-diffusion process based on the powder-in-tube (Fe-diffusion PIT) method. The reacted layer in these wires were found to have composite structure with composition nearly FeSe and FeTe for the inner and outer layers, although a single layer of composition FeSe0.5Te0.5 was supposed to be formed. The self-field transport Jc values at 4.2 K were found to be 226.2 A/cm2 and 100.3 A/cm2 respectively for mono- and seven-core wires. The Jc's of mono- and seven-core wires dropped rapidly at low fields and then showed a gradual decrease with increasing magnetic fields. In addition, the seven-core wire showed higher Jc than the mono-core wire under higher magnetic fields, indicating that the seven-core wire of FeSe1-xTex superconductor using Fe-diffusion PIT method is advantageous for the superconducting-wire application under high magnetic fields.Comment: 19 pages, 6 figure

    One-step synthesis of KxFe2-ySe2 single crystals for high critical current density

    Full text link
    We have established a simple process that allows for the one-step synthesis of KxFe2-ySe2 single crystals, which exhibit high critical current density Jc. The post annealing and quenching technique has improved the homogeneity of as-grown crystals, resulting in full shielding of the external magnetic field. The quenched crystals show a superconducting transition at Tconset = 32.9 K and Tczero = 32.1 K. The upper critical fields \mu_{0}Hc2(0) for H//ab and H//c are estimated to be ~206 and ~50 T, respectively. The critical current densities Jc for H//ab and H//c reach as high as 1.0\times10^{5} and 3.4\times10^{4} A/cm2 at 5 K. Furthermore, Jc exhibits a high field performance and a significantly weak temperature dependence up to 5 T, suggesting strong pinning. These results demonstrate that KxFe2-ySe2 would be a promising candidate material for practical applications.Comment: 10 pages, 5 figure
    corecore