30 research outputs found
Reduced expression of p27 is a novel mechanism of docetaxel resistance in breast cancer cells
INTRODUCTION: Docetaxel is one of the most effective chemotherapeutic agents in the treatment of breast cancer. Breast cancers can have an inherent or acquired resistance to docetaxel but the causes of this resistance remain unclear. However, apoptosis and cell cycle regulation are key mechanisms by which most chemotherapeutic agents exert their cytotoxic effects. METHODS: We created two docetaxel-resistant human breast cancer cell lines (MCF-7 and MDA-MB-231) and performed cDNA microarray analysis to identify candidate genes associated with docetaxel resistance. Gene expression changes were validated at the RNA and protein levels by reverse transcription PCR and western analysis, respectively. RESULTS: Gene expression cDNA microarray analysis demonstrated reduced p27 expression in docetaxel-resistant breast cancer cells. Although p27 mRNA expression was found to be reduced only in MCF-7 docetaxel-resistant sublines (2.47-fold), reduced expression of p27 protein was noted in both MCF-7 and MDA-MB-231 docetaxel-resistant breast cancer cells (2.83-fold and 3.80-fold, respectively). CONCLUSIONS: This study demonstrates that reduced expression of p27 is associated with acquired resistance to docetaxel in breast cancer cells. An understanding of the genes that are involved in resistance to chemotherapy may allow further development in modulating drug resistance, and may permit selection of those patients who are most likely to benefit from such therapies
Overview of the first Wendelstein 7-X long pulse campaign with fully water-cooled plasma facing components
After a long device enhancement phase, scientific operation resumed in 2022. The main new
device components are the water cooling of all plasma facing components and the new
water-cooled high heat flux divertor units. Water cooling allowed for the first long-pulse
operation campaign. A maximum discharge length of 8 min was achieved with a total heating
energy of 1.3 GJ. Safe divertor operation was demonstrated in attached and detached mode.
Stable detachment is readily achieved in some magnetic configurations but requires impurity
seeding in configurations with small magnetic pitch angle within the edge islands. Progress was
made in the characterization of transport mechanisms across edge magnetic islands:
Measurement of the potential distribution and flow pattern reveals that the islands are associated
with a strong poloidal drift, which leads to rapid convection of energy and particles from the last
closed flux surface into the scrape-off layer. Using the upgraded plasma heating systems,
advanced heating scenarios were developed, which provide improved energy confinement
comparable to the scenario, in which the record triple product for stellarators was achieved in
the previous operation campaign. However, a magnetic configuration-dependent critical heating
power limit of the electron cyclotron resonance heating was observed. Exceeding the respective
power limit leads to a degradation of the confinement
Performance of wild-serbian ganoderma lucidum mycelium in treating synthetic sewage loading using batch bioreactor
The fluctuation of domestic wastewater characteristic inhibits the current conventional microbial-based treatment. The bioremediation fungi has received attention and reported to be an effective alternative to treat industrial wastewater. Similar efficient performance is envisaged for domestic wastewater whereby assessed performance of fungi for varying carbon-to-nitrogen ratios in domestic wastewater is crucial. Thus, the performance of pre-grown wild-Serbian Ganoderma lucidum mycelial pellets (GLMPs) was evaluated on four different synthetic domestic wastewaters under different conditions of initial pH (pH 4, 5, and 7) and chemical oxygen demand (COD) to nitrogen (COD/N) ratio of 3.6:1, 7.1:1, 14.2:1, and 17.8:1 (C3.6N1, C7.1N1, C14.2N1, and C17.8N1). The COD/N ratios with a constant concentration of ammonia–nitrogen (NH3–N) were chosen on the basis of the urban domestic wastewater characteristics sampled at the inlet basin of a sewage treatment plant (STP). The parameters of pH, COD, and NH3–N were measured periodically during the experiment. The wild-Serbian GLMPs efficiently removed the pollutants from the synthetic sewage. The COD/N ratio of C17.8N1 wastewater had the best COD and NH3–N removal, as compared to the lower COD/N ratio, and the shortest treatment time was obtained in an acidic environment at pH 4. The highest percentage for COD and NH3–N removal achieved was 96.0% and 93.2%, respectively. The results proved that the mycelium of GLMP has high potential in treating domestic wastewater, particularly at high organic content as a naturally sustainable bioremediation system
Damage Assessment and Modeling of the Five Tiered Pagoda Style Nyatapola Temple
This paper presents a novel methodology to combine ambient vibration-based operation modal analysis with three-dimensional ground-based lidar data to study damage on the Nyatapola Temple, which is a Bhaktapur UNESCO World Heritage Site that was damaged during the 2015 Gorkha, Nepal, earthquake. The post-earthquake ambient vibration data, collected via accelerometers placed on various levels of the temple, are used to estimate the vibrational properties via operational modal analysis. These properties are then compared to the pre-earthquake dynamic characteristics collected in 2002. The lidar data provide a geometric assessment of the current condition of the temple, capturing post-earthquake drift as a function of height as well as significant cracks present in the facade. The lidar data also inform the numerical models implemented for the post-earthquake condition assessment of the temple. </jats:p