1,204 research outputs found
Variation in ligand responses of the bitter taste receptors TAS2R1 and TAS2R4 among New World monkeys.
BACKGROUND: New World monkeys (NWMs) are unique in that they exhibit remarkable interspecific variation in color vision and feeding behavior, making them an excellent model for studying sensory ecology. However, it is largely unknown whether non-visual senses co-vary with feeding ecology, especially gustation, which is expected to be indispensable in food selection. Bitter taste, which is mediated by bitter taste receptors (TAS2Rs) in the tongue, helps organisms avoid ingesting potentially toxic substances in food. In this study, we compared the ligand sensitivities of the TAS2Rs of five species of NWMs by heterologous expression in HEK293T cells and calcium imaging. RESULTS: We found that TAS2R1 and TAS2R4 orthologs differ in sensitivity among the NWM species for colchicine and camphor, respectively. We then reconstructed the ancestral receptors of NWM TAS2R1 and TAS2R4, measured the evolutionary shift in ligand sensitivity, and identified the amino acid replacement at residue 62 as responsible for the high sensitivity of marmoset TAS2R4 to colchicine. CONCLUSIONS: Our results provide a basis for understanding the differences in feeding ecology among NWMs with respect to bitter taste
Gauge-Higgs Dark Matter
When the anti-periodic boundary condition is imposed for a bulk field in
extradimensional theories, independently of the background metric, the lightest
component in the anti-periodic field becomes stable and hence a good candidate
for the dark matter in the effective 4D theory due to the remaining accidental
discrete symmetry. Noting that in the gauge-Higgs unification scenario,
introduction of anti-periodic fermions is well-motivated by a phenomenological
reason, we investigate dark matter physics in the scenario. As an example, we
consider a five-dimensional SO(5)\timesU(1)_X gauge-Higgs unification model
compactified on the with the warped metric. Due to the structure of
the gauge-Higgs unification, interactions between the dark matter particle and
the Standard Model particles are largely controlled by the gauge symmetry, and
hence the model has a strong predictive power for the dark matter physics.
Evaluating the dark matter relic abundance, we identify a parameter region
consistent with the current observations. Furthermore, we calculate the elastic
scattering cross section between the dark matter particle and nucleon and find
that a part of the parameter region is already excluded by the current
experimental results for the direct dark matter search and most of the region
will be explored in future experiments.Comment: 16 pages, 2 figure
Freeze-In Production of FIMP Dark Matter
We propose an alternate, calculable mechanism of dark matter genesis,
"thermal freeze-in," involving a Feebly Interacting Massive Particle (FIMP)
interacting so feebly with the thermal bath that it never attains thermal
equilibrium. As with the conventional "thermal freeze-out" production
mechanism, the relic abundance reflects a combination of initial thermal
distributions together with particle masses and couplings that can be measured
in the laboratory or astrophysically. The freeze-in yield is IR dominated by
low temperatures near the FIMP mass and is independent of unknown UV physics,
such as the reheat temperature after inflation. Moduli and modulinos of string
theory compactifications that receive mass from weak-scale supersymmetry
breaking provide implementations of the freeze-in mechanism, as do models that
employ Dirac neutrino masses or GUT-scale-suppressed interactions. Experimental
signals of freeze-in and FIMPs can be spectacular, including the production of
new metastable coloured or charged particles at the LHC as well as the
alteration of big bang nucleosynthesis.Comment: 30 pages, 7 figures, PDFLaTex. References adde
String theoretic QCD axions in the light of PLANCK and BICEP2
The QCD axion solving the strong CP problem may originate from antisymmetric
tensor gauge fields in compactified string theory, with a decay constant around
the GUT scale. Such possibility appears to be ruled out now by the detection of
tensor modes by BICEP2 and the PLANCK constraints on isocurvature density
perturbations. A more interesting and still viable possibility is that the
string theoretic QCD axion is charged under an anomalous U(1)_A gauge symmetry.
In such case, the axion decay constant can be much lower than the GUT scale if
moduli are stabilized near the point of vanishing Fayet-Illiopoulos term, and
U(1)_A-charged matter fields get a vacuum value far below the GUT scale due to
a tachyonic SUSY breaking scalar mass. We examine the symmetry breaking pattern
of such models during the inflationary epoch with the Hubble expansion rate
10^{14} GeV, and identify the range of the QCD axion decay constant, as well as
the corresponding relic axion abundance, consistent with known cosmological
constraints. In addition to the case that the PQ symmetry is restored during
inflation, there are other viable scenarios, including that the PQ symmetry is
broken during inflation at high scales around 10^{16}-10^{17} GeV due to a
large Hubble-induced tachyonic scalar mass from the U(1)_A D-term, while the
present axion scale is in the range 10^{9}-5\times 10^{13} GeV, where the
present value larger than 10^{12} GeV requires a fine-tuning of the axion
misalignment angle. We also discuss the implications of our results for the
size of SUSY breaking soft masses.Comment: 29 pages, 1 figure; v3: analysis updated including the full
anharmonic effects, references added, version accepted for publication in
JHE
Spread Supersymmetry
In the multiverse the scale of SUSY breaking, \tilde{m} = F_X/M_*, may scan
and environmental constraints on the dark matter density may exclude a large
range of \tilde{m} from the reheating temperature after inflation down to
values that yield a LSP mass of order a TeV. After selection effects, the
distribution for \tilde{m} may prefer larger values. A single environmental
constraint from dark matter can then lead to multi-component dark matter,
including both axions and the LSP, giving a TeV-scale LSP lighter than the
corresponding value for single-component LSP dark matter.
If SUSY breaking is mediated to the SM sector at order X^* X, only squarks,
sleptons and one Higgs doublet acquire masses of order \tilde{m}. The gravitino
mass is lighter by a factor of M_*/M_Pl and the gaugino masses are suppressed
by a further loop factor. This Spread SUSY spectrum has two versions; the
Higgsino masses are generated in one from supergravity giving a wino LSP and in
the other radiatively giving a Higgsino LSP. The environmental restriction on
dark matter fixes the LSP mass to the TeV domain, so that the squark and
slepton masses are order 10^3 TeV and 10^6 TeV in these two schemes. We study
the spectrum, dark matter and collider signals of these two versions of Spread
SUSY. The Higgs is SM-like and lighter than 145 GeV; monochromatic photons in
cosmic rays arise from dark matter annihilations in the halo; exotic short
charged tracks occur at the LHC, at least for the wino LSP; and there are the
eventual possibilities of direct detection of dark matter and detailed
exploration of the TeV-scale states at a future linear collider. Gauge coupling
unification is as in minimal SUSY theories.
If SUSY breaking is mediated at order X, a much less hierarchical spectrum
results---similar to that of the MSSM, but with the superpartner masses 1--2
orders of magnitude larger than in natural theories.Comment: 20 pages, 5 figure
Anatomy and dietary specialization influence sensory behaviour among sympatric primates
Senses form the interface between animals and environments, and provide a window into the ecology of past and present species. However, research on sensory behaviours by wild frugivores is sparse. Here, we examine fruit assessment by three sympatric primates (Alouatta palliata, Ateles geoffroyi and Cebus imitator) to test the hypothesis that dietary and sensory specialization shape foraging behaviours. Ateles and Cebus groups are comprised of dichromats and trichromats, while all Alouatta are trichomats. We use anatomical proxies to examine smell, taste and manual touch, and opsin genotyping to assess colour vision. We find that the frugivorous spider monkeys (Ateles geoffroyi) sniff fruits most often, omnivorous capuchins (Cebus imitator), the species with the highest manual dexterity, use manual touch most often, and that main olfactory bulb volume is a better predictor of sniffing behaviour than nasal turbinate surface area. We also identify an interaction between colour vision phenotype and use of other senses. Controlling for species, dichromats sniff and bite fruits more often than trichromats, and trichromats use manual touch to evaluate cryptic fruits more often than dichromats. Our findings reveal new relationships among dietary specialization, anatomical variation and foraging behaviour, and promote understanding of sensory system evolution
Importance of Achromatic Contrast in Short-Range Fruit Foraging of Primates
Trichromatic primates have a âred-greenâ chromatic channel in addition to luminance and âblue-yellowâ channels. It has been argued that the red-green channel evolved in primates as an adaptation for detecting reddish or yellowish objects, such as ripe fruits, against a background of foliage. However, foraging advantages to trichromatic primates remain unverified by behavioral observation of primates in their natural habitats. New World monkeys (platyrrhines) are an excellent model for this evaluation because of the highly polymorphic nature of their color vision due to allelic variation of the L-M opsin gene on the X chromosome. In this study we carried out field observations of a group of wild, frugivorous black-handed spider monkeys (Ateles geoffroyi frontatus, Gray 1842, Platyrrhini), consisting of both dichromats (nâ=â12) and trichromats (nâ=â9) in Santa Rosa National Park, Costa Rica. We determined the color vision types of individuals in this group by genotyping their L-M opsin and measured foraging efficiency of each individual for fruits located at a grasping distance. Contrary to the predicted advantage for trichromats, there was no significant difference between dichromats and trichromats in foraging efficiency and we found that the luminance contrast was the main determinant of the variation of foraging efficiency among red-green, blue-yellow and luminance contrasts. Our results suggest that luminance contrast can serve as an important cue in short-range foraging attempts despite other sensory cues that could be available. Additionally, the advantage of red-green color vision in primates may not be as salient as previously thought and needs to be evaluated in further field observations
Derivation of Induced Pluripotent Stem Cells from Human Peripheral Blood T Lymphocytes
Induced pluripotent stem cells (iPSCs) hold enormous potential for the development of personalized in vitro disease models, genomic health analyses, and autologous cell therapy. Here we describe the generation of T lymphocyte-derived iPSCs from small, clinically advantageous volumes of non-mobilized peripheral blood. These T-cell derived iPSCs (âTiPSâ) retain a normal karyotype and genetic identity to the donor. They share common characteristics with human embryonic stem cells (hESCs) with respect to morphology, pluripotency-associated marker expression and capacity to generate neurons, cardiomyocytes, and hematopoietic progenitor cells. Additionally, they retain their characteristic T-cell receptor (TCR) gene rearrangements, a property which could be exploited for iPSC clone tracking and T-cell development studies. Reprogramming T-cells procured in a minimally invasive manner can be used to characterize and expand donor specific iPSCs, and control their differentiation into specific lineages
Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV
The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of âs = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pTâ„20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60â€pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2â€{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
- âŠ