32 research outputs found

    Oxygen uptake, heart rate, perceived exertion, and integrated electromyogram of the lower and upper extremities during level and Nordic walking on a treadmill

    Get PDF
    The purpose of this study was to characterize responses in oxygen uptake ( [Formula: see text]), heart rate (HR), perceived exertion (OMNI scale) and integrated electromyogram (iEMG) readings during incremental Nordic walking (NW) and level walking (LW) on a treadmill. Ten healthy adults (four men, six women), who regularly engaged in physical activity in their daily lives, were enrolled in the study. All subjects were familiar with NW. Each subject began walking at 60 m/min for 3 minutes, with incremental increases of 10 m/min every 2 minutes up to 120 m/min [Formula: see text] , [Formula: see text] and HR were measured every 30 seconds, and the OMNI scale was used during the final 15 seconds of each exercise. EMG readings were recorded from the triceps brachii, vastus lateralis, biceps femoris, gastrocnemius, and tibialis anterior muscles. [Formula: see text] was significantly higher during NW than during LW, with the exception of the speed of 70 m/min (P < 0.01). [Formula: see text] and HR were higher during NW than LW at all walking speeds (P < 0.05 to 0.001). OMNI scale of the upper extremities was significantly higher during NW than during LW at all speeds (P < 0.05). Furthermore, the iEMG reading for the VL was lower during NW than during LW at all walking speeds, while the iEMG reading for the BF and GA muscles were significantly lower during NW than LW at some speeds. These data suggest that the use of poles in NW attenuates muscle activity in the lower extremities during the stance and push-off phases, and decreases that of the lower extremities and increase energy expenditure of the upper body and respiratory system at certain walking speeds

    Cost Analysis of Screening for IgA Nephropathy Using Novel Biomarkers

    Get PDF
    [Objectives] IgA nephropathy (IgAN) is the most common primary chronic glomerulonephritis and a major cause of end-stage kidney disease worldwide. Novel biomarkers, including the aberrantly glycosylated IgA1 and glycan-specific antibodies, could be useful in the diagnosis of IgAN. The aim of this study was to assess the cost analysis of IgAN screening using novel biomarkers in addition to the conventional screening compared with conventional screening alone. [Methods] To estimate the medical expense of each strategy related to renal disease for 40 years, we developed an analytical decision model. The decision tree started at “40 years of age with first-time hematuria.” It simulated 2 clinical strategies: IgAN screening using the novel biomarkers (group N) and conventional screening (group C). The analysis results were presented as medical expenses from a societal perspective. Discounting was not conducted. [Results] The expected medical expense per person for 40 years was ¥31.2 million (~291000)ingroupNand¥33.4million( 291 000) in group N and ¥33.4 million (~312 000) in group C; hence, expense in group N was lower by ¥2.2 million (~$21 000). In group N, the expected value of IgAN increased by 5.67% points (N 48.44%, C 42.77%) and that of dialysis introduction decreased by 0.85% points (N 19.06%, C 19.91%). In the sensitivity analysis, expenses could be reduced in almost all cases except when renal biopsy using conventional screening was performed at the rate of 73% or higher. [Conclusion] Screening for IgAN using novel biomarkers would reduce renal disease–related expenses

    A Detailed Observational Study of Molecular Loops 1 and 2 in the Galactic Center

    Full text link
    Fukui et al. (2006) discovered two huge molecular loops in the Galactic center located in (l, b) ~ (355 deg-359 deg, 0 deg-2 deg) in a large velocity range of -180-40 km s^-1. Following the discovery, we present detailed observational properties of the two loops based on NANTEN 12CO(J=1-0) and 13CO(J=1-0) datasets at 10 pc resolution including a complete set of velocity channel distributions and comparisons with HI and dust emissions as well as with the other broad molecular features. We find new features on smaller scales in the loops including helical distributions in the loop tops and vertical spurs. The loops have counterparts of the HI gas indicating that the loops include atomic gas. The IRAS far infrared emission is also associated with the loops and was used to derive an X-factor of 0.7(+/-0.1){\times}10^20 cm^-2 (K km s^-1)^-1 to convert the 12CO intensity into the total molecular hydrogen column density. From the 12CO, 13CO, H I and dust datasets we estimated the total mass of loops 1 and 2 to be ~1.4 {\times} 106 Msun and ~1.9 {\times} 10^6 Msun, respectively, where the H I mass corresponds to ~10-20% of the total mass and the total kinetic energy of the two loops to be ~10^52 ergs. An analysis of the kinematics of the loops yields that the loops are rotating at ~47 km s-1 and expanding at ~141 km s^-1 at a radius of 670 pc from the center. Fukui et al. (2006) presented a model that the loops are created by the magnetic flotation due to the Parker instability with an estimated magnetic field strength of ~150 {\mu}G. We present comparisons with the recent numerical simulations of the magnetized nuclear disk by Machida et al. (2009) and Takahashi et al. (2009) and show that the theoretical results are in good agreements with the observations. The helical distributions also suggest that some magnetic instability plays a role similarly to the solar helical features.Comment: 40 pages, 22 figures, submitted to publication in PAS

    Discovery of Molecular Loop 3 in the Galactic Center: Evidence for a Positive-Velocity Magnetically Floated Loop towards L=355359L=355^\circ-359^\circ

    Full text link
    We have discovered a molecular dome-like feature towards 355l359355^{\circ} \leq l \leq 359^{\circ} and 0b20^{\circ} \leq b \leq 2^{\circ}. The large velocity dispersions of 50--100 km s1^{-1} of this feature are much larger than those in the Galactic disk and indicate that the feature is located in the Galactic center, probably within 1\sim1 kpc of Sgr A^{*}. The distribution has a projected length of 600\sim600 pc and height of 300\sim300 pc from the Galactic disk and shows a large-scale monotonic velocity gradient of 130\sim130 km s 1^{-1} per 600\sim600 pc. The feature is also associated with HI gas having a more continuous spatial and velocity distribution than that of 12^{12}CO. We interpret the feature as a magnetically floated loop similar to loops 1 and 2 and name it "loop 3". Loop 3 is similar to loops 1 and 2 in its height and length but is different from loops 1 and 2 in that the inner part of loop 3 is filled with molecular emission. We have identified two foot points at the both ends of loop 3. HI, 12^{12}CO and 13^{13}CO datasets were used to estimate the total mass and kinetic energy of loop 3 to be \sim3.0 \times 10^{6} \Mo and 1.7×1052\sim1.7 \times 10^{52} ergs. The huge size, velocity dispersions and energy are consistent with the magnetic origin the Parker instability as in case of loops 1 and 2 but is difficult to be explained by multiple stellar explosions. We argue that loop 3 is in an earlier evolutionary phase than loops 1 and 2 based on the inner-filled morphology and the relative weakness of the foot points. This discovery indicates that the western part of the nuclear gas disk of 1\sim1 kpc radius is dominated by the three well-developed magnetically floated loops and suggests that the dynamics of the nuclear gas disk is strongly affected by the magnetic instabilities.Comment: 30 pages, 10 figures. High resolution figures are available at http://www.a.phys.nagoya-u.ac.jp/~motosuji/fujishita09_figs

    High Excitation Molecular Gas in the Galactic Center Loops; 12CO(J =2-1 and J =3-2) Observations

    Full text link
    We have carried out 12CO(J =2-1) and 12CO(J =3-2) observations at spatial resolutions of 1.0-3.8 pc toward the entirety of loops 1 and 2 and part of loop 3 in the Galactic center with NANTEN2 and ASTE. These new results revealed detailed distributions of the molecular gas and the line intensity ratio of the two transitions, R3-2/2-1. In the three loops, R3-2/2-1 is in a range from 0.1 to 2.5 with a peak at ~ 0.7 while that in the disk molecular gas is in a range from 0.1 to 1.2 with a peak at 0.4. This supports that the loops are more highly excited than the disk molecular gas. An LVG analysis of three transitions, 12CO J =3-2 and 2-1 and 13CO J =2-1, toward six positions in loops 1 and 2 shows density and temperature are in a range 102.2 - 104.7 cm-3 and 15-100 K or higher, respectively. Three regions extended by 50-100 pc in the loops tend to have higher excitation conditions as characterized by R3-2/2-1 greater than 1.2. The highest ratio of 2.5 is found in the most developed foot points between loops 1 and 2. This is interpreted that the foot points indicate strongly shocked conditions as inferred from their large linewidths of 50-100 km s-1, confirming the suggestion by Torii et al. (2010b). The other two regions outside the foot points suggest that the molecular gas is heated up by some additional heating mechanisms possibly including magnetic reconnection. A detailed analysis of four foot points have shown a U shape, an L shape or a mirrored-L shape in the b-v distribution. It is shown that a simple kinematical model which incorporates global rotation and expansion of the loops is able to explain these characteristic shapes.Comment: 59 pages, accepted to PAS

    Electrocardiographic and Chronobiological Features of Paroxysmal AV Block Recorded by Ambulatory Electrocardiography

    Get PDF
    The goal of this study was to investigate the electrocardiographic and chronobiological features of paroxysmal atrioventricular (AV) block (PAVB) using data from ambulatory electrocardiography (AECG). The study population consisted of five men and six women aged from 47 to 82 years of age. Main presenting symptoms were pre-syncope in five patients (45.5%) and syncope in three patients (27.3%). Organic cardiovascular diseases were seen in eight patients (72.7%), and AV conduction disturbances were seen in six patients (54.5%), such as right bundle branch block, first to second degree AV block on standard 12-lead electrocardiography. Incidence of PAVB events were 1-329 (37.9±98.0) episodes/patient/day, and the maximum pause during Holter recordings was 3.3-12.4 (6.39±3.09) seconds. This maximum pause caused by intrinsic AV block was longer than that of vagally mediated AV block (8.4±3.2 sec vs 4.7±1.0 sec, p<0.05). In chronobiological analysis, episodes of PAVB exhibited a circadian rhythm characterized by a peak between 2 : 00 am and 4 : 00 am and a trough between 0 : 00 pm and 2 : 00 pm. AECG is a useful tool to detect the maximum pause occurring during sleep and provides critical data necessary to prevent the sudden cardiac death caused by PAVB

    Temperature and Density in the Foot Points of the Molecular Loops in the Galactic Center; Analysis of Multi-J Transitions of 12CO(J=1-0, 3-2, 4-3, 7-6), 13CO(J=1-0) and C18O(J=1-0)

    Full text link
    Fukui et al. (2006) discovered two molecular loops in the Galactic center and argued that the foot points of the molecular loops, two bright spots at both loops ends, represent the gas accumulated by the falling motion along the loops, subsequent to magnetic flotation by the Parker instability. We have carried out sensitive CO observations of the foot points toward l=356 deg at a few pc resolution in the six rotational transitions of CO; 12CO(J=1-0, 3-2, 4-3, 7-6), 13CO(J=1-0) and C18O(J=1-0). The high resolution image of 12CO (J=3-2) has revealed the detailed distribution of the high excitation gas including U shapes, the outer boundary of which shows sharp intensity jumps accompanying strong velocity gradients. An analysis of the multi-J CO transitions shows that the temperature is in a range from 30-100 K and density is around 10^3-10^4 cm^-3, confirming that the foot points have high temperature and density although there is no prominent radiative heating source such as high mass stars in or around the loops. We argue that the high temperature is likely due to the shock heating under C-shock condition caused by the magnetic flotation. We made a comparison of the gas distribution with theoretical numerical simulations and note that the U shape is consistent with numerical simulations. We also find that the region of highest temperature of ~100 K or higher inside the U shape corresponds to the spur having an upward flow, additionally heated up either by magnetic reconnection or bouncing in the interaction with the narrow neck at the bottom of the U shape. We note these new findings further reinforce the magnetic floatation interpretation.Comment: 40 pages, 23 figures, accepted by PASJ on Vol.62 No.
    corecore