71 research outputs found

    Improving Clinical Practice Using Clinical Decision Support Systems: A Systematic Review of Trials to Identify Features Critical to Success

    Get PDF
    Objective To identify features of clinical decision support systems critical for improving clinical practice. Design Systematic review of randomised controlled trials. Data sources Literature searches via Medline, CINAHL, and the Cochrane Controlled Trials Register up to 2003; and searches of reference lists of included studies and relevant reviews. Study selection Studies had to evaluate the ability of decision support systems to improve clinical practice. Data extraction Studies were assessed for statistically and clinically significant improvement in clinical practice and for the presence of 15 decision support system features whose importance had been repeatedly suggested in the literature. Results Seventy studies were included. Decision support systems significantly improved clinical practice in 68% of trials. Univariate analyses revealed that, for five of the system features, interventions possessing the feature were significantly more likely to improve clinical practice than interventions lacking the feature. Multiple logistic regression analysis identified four features as independent predictors of improved clinical practice: automatic provision of decision support as part of clinician workflow (P \u3c 0.00001), provision of recommendations rather than just assessments (P = 0.0187), provision of decision support at the time and location of decision making (P = 0.0263), and computer based decision support (P = 0.0294). Of 32 systems possessing all four features, 30 (94%) significantly improved clinical practice. Furthermore, direct experimental justification was found for providing periodic performance feedback, sharing recommendations with patients, and requesting documentation of reasons for not following recommendations. Conclusions Several features were closely correlated with decision support systems\u27 ability to improve patient care significantly. Clinicians and other stakeholders should implement clinical decision support systems that incorporate these features whenever feasible and appropriate

    System-Agnostic Clinical Decision Support Services: Benefits and Challenges for Scalable Decision Support

    Get PDF
    System-agnostic clinical decision support (CDS) services provide patient evaluation capabilities that are independent of specific CDS systems and system implementation contexts. While such system-agnostic CDS services hold great potential for facilitating the widespread implementation of CDS systems, little has been described regarding the benefits and challenges of their use. In this manuscript, the authors address this need by describing potential benefits and challenges of using a system-agnostic CDS service. This analysis is based on the authors’ formal assessments of, and practical experiences with, various approaches to developing, implementing, and maintaining CDS capabilities. In particular, the analysis draws on the authors’ experience developing and leveraging a system-agnostic CDS Web service known as SEBASTIAN. A primary potential benefit of using a system-agnostic CDS service is the relative ease and flexibility with which the service can be leveraged to implement CDS capabilities across applications and care settings. Other important potential benefits include facilitation of centralized knowledge management and knowledge sharing; the potential to support multiple underlying knowledge representations and knowledge resources through a common service interface; improved simplicity and componentization; easier testing and validation; and the enabling of distributed CDS system development. Conversely, important potential challenges include the increased effort required to develop knowledge resources capable of being used in many contexts and the critical need to standardize the service interface. Despite these challenges, our experiences to date indicate that the benefits of using a system-agnostic CDS service generally outweigh the challenges of using this approach to implementing and maintaining CDS systems

    Consideration of patient preferences and challenges in storage and access of pharmacogenetic test results

    Get PDF
    Pharmacogenetic (PGx) testing is one of the primary drivers of personalized medicine. The use of PGx testing may provide a lifetime of benefits through tailoring drug dosing and selection of multiple medications to improve therapeutic outcomes and reduce adverse responses. We aimed to assess public interest and concerns regarding sharing and storage of PGx test results that would facilitate the re-use of PGx data across a lifetime of care

    Standards for Scalable Clinical Decision Support: Need, Current and Emerging Standards, Gaps, and Proposal for Progress

    Get PDF
    Despite their potential to significantly improve health care, advanced clinical decision support (CDS) capabilities are not widely available in the clinical setting. An important reason for this limited availability of CDS capabilities is the application-specific and institution-specific nature of most current CDS implementations. Thus, a critical need for enabling CDS capabilities on a much larger scale is the development and adoption of standards that enable current and emerging CDS resources to be more effectively leveraged across multiple applications and care settings. Standards required for such effective scaling of CDS include (i) standard terminologies and information models to represent and communicate about health care data; (ii) standard approaches to representing clinical knowledge in both human-readable and machine-executable formats; and (iii) standard approaches for leveraging these knowledge resources to provide CDS capabilities across various applications and care settings. A number of standards do exist or are under development to meet these needs. However, many gaps and challenges remain, including the excessive complexity of many standards; the limited availability of easily accessible knowledge resources implemented using standard approaches; and the lack of tooling and other practical resources to enable the efficient adoption of existing standards. Thus, the future development and widespread adoption of current CDS standards will depend critically on the availability of tooling, knowledge bases, and other resources that make the adoption of CDS standards not only the right approach to take, but the cost-effective path to follow given the alternative of using a traditional, ad hoc approach to implementing CDS

    Case-based similar image retrieval for weakly annotated large histopathological images of malignant lymphoma using deep metric learning

    Full text link
    In the present study, we propose a novel case-based similar image retrieval (SIR) method for hematoxylin and eosin (H&E)-stained histopathological images of malignant lymphoma. When a whole slide image (WSI) is used as an input query, it is desirable to be able to retrieve similar cases by focusing on image patches in pathologically important regions such as tumor cells. To address this problem, we employ attention-based multiple instance learning, which enables us to focus on tumor-specific regions when the similarity between cases is computed. Moreover, we employ contrastive distance metric learning to incorporate immunohistochemical (IHC) staining patterns as useful supervised information for defining appropriate similarity between heterogeneous malignant lymphoma cases. In the experiment with 249 malignant lymphoma patients, we confirmed that the proposed method exhibited higher evaluation measures than the baseline case-based SIR methods. Furthermore, the subjective evaluation by pathologists revealed that our similarity measure using IHC staining patterns is appropriate for representing the similarity of H&E-stained tissue images for malignant lymphoma

    Barriers to family history collection among Spanish-speaking primary care patients: a BRIDGE qualitative study

    Get PDF
    Objects: Family history is an important tool for assessing disease risk, and tailoring recommendations for screening and genetic services referral. This study explored barriers to family history collection with Spanish-speaking patients. Methods: This qualitative study was conducted in two US healthcare systems. We conducted semi-structured interviews with medical assistants, physicians, and interpreters with experience collecting family history for Spanish-speaking patients. Results: The most common patient-level barrier was the perception that some Spanish-speaking patients had limited knowledge of family history. Interpersonal communication barriers related to dialectical differences and decisions about using formal interpreters vs. Spanish-speaking staff. Organizational barriers included time pressures related to using interpreters, and ad hoc workflow adaptations for Spanish-speaking patients that might leave gaps in family history collection. Conclusions: This study identified multi-level barriers to family history collection with Spanish-speaking patients in primary care. Findings suggest that a key priority to enhance communication would be to standardize processes for working with interpreters. Innovation: To improve communication with and care provided to Spanish-speaking patients, there is a need to increase healthcare provider awareness about implicit bias, to address ad hoc workflow adjustments within practice settings, to evaluate the need for professional interpreter services, and to improve digital tools to facilitate family history collection

    A national clinical decision support infrastructure to enable the widespread and consistent practice of genomic and personalized medicine

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In recent years, the completion of the Human Genome Project and other rapid advances in genomics have led to increasing anticipation of an era of genomic and personalized medicine, in which an individual's health is optimized through the use of all available patient data, including data on the individual's genome and its downstream products. Genomic and personalized medicine could transform healthcare systems and catalyze significant reductions in morbidity, mortality, and overall healthcare costs.</p> <p>Discussion</p> <p>Critical to the achievement of more efficient and effective healthcare enabled by genomics is the establishment of a robust, nationwide clinical decision support infrastructure that assists clinicians in their use of genomic assays to guide disease prevention, diagnosis, and therapy. Requisite components of this infrastructure include the standardized representation of genomic and non-genomic patient data across health information systems; centrally managed repositories of computer-processable medical knowledge; and standardized approaches for applying these knowledge resources against patient data to generate and deliver patient-specific care recommendations. Here, we provide recommendations for establishing a national decision support infrastructure for genomic and personalized medicine that fulfills these needs, leverages existing resources, and is aligned with the <it>Roadmap for National Action on Clinical Decision Support </it>commissioned by the U.S. Office of the National Coordinator for Health Information Technology. Critical to the establishment of this infrastructure will be strong leadership and substantial funding from the federal government.</p> <p>Summary</p> <p>A national clinical decision support infrastructure will be required for reaping the full benefits of genomic and personalized medicine. Essential components of this infrastructure include standards for data representation; centrally managed knowledge repositories; and standardized approaches for leveraging these knowledge repositories to generate patient-specific care recommendations at the point of care.</p
    • …
    corecore