5,615 research outputs found
Mott transitions in two-orbital Hubbard systems
We investigate the Mott transitions in two-orbital Hubbard systems. Applying
the dynamical mean field theory and the self-energy functional approach, we
discuss the stability of itinerant quasi-particle states in each band. It is
shown that separate Mott transitions occur at different Coulomb interaction
strengths in general. On the other hand, if some special conditions are
satisfied for the interactions, spin and orbital fluctuations are equally
enhanced at low temperatures, resulting in a single Mott transition. The phase
diagrams are obtained at zero and finite temperatures. We also address the
effect of the hybridization between two orbitals, which induces the Kondo-like
heavy fermion states in the intermediate orbital-selective Mott phase.Comment: 21 Pages, 17 Figures, to appear in Progress of Theoretical Physics
(YKIS2004 Proceedings
Zero-temperature Phase Diagram of Two Dimensional Hubbard Model
We investigate the two-dimensional Hubbard model on the triangular lattice
with anisotropic hopping integrals at half filling. By means of a self-energy
functional approach, we discuss how stable the non-magnetic state is against
magnetically ordered states in the system. We present the zero-temperature
phase diagram, where the normal metallic state competes with magnetically
ordered states with and structures. It is shown
that a non-magnetic Mott insulating state is not realized as the ground state,
in the present framework, but as a meta-stable state near the magnetically
ordered phase with structure.Comment: 4 pages, 4 figure
Softening of Magnetic Excitations Leading to Pressure-Induced Quantum Phase Transition in Gapped Spin System KCuCl
KCuCl is a three dimensionally coupled spin dimer system, which undergoes
a pressure-induced quantum phase transition from a gapped ground state to an
antiferromagnetic state at a critical pressure of kbar.
Magnetic excitations in KCuCl at a hydrostatic pressure of 4.7 kbar have
been investigated by conducting neutron inelastic scattering experiments using
a newly designed cylindrical high-pressure clamp cell. A well-defined single
excitation mode is observed. The softening of the excitation mode due to the
applied pressure is clearly observed. From the analysis of the dispersion
relations, it is found that an intradimer interaction decreases under
hydrostatic pressure, while most interdimer interactions increase.Comment: 4 pages, 5 figures, 1 table, jpsj2.cls, to be published in J. Phys.
Soc. Jpn. Vol.76 (2007), the graphic problem of Fig.2 was fixe
Mott insulating state in a quarter-filled two-orbital Hubbard chain with different bandwidths
We investigate the ground-state properties of the one-dimensional two-band
Hubbard model with different bandwidths. The density-matrix renormalization
group method is applied to calculate the averaged electron occupancies as a
function of the chemical potential . Both at quarter and half fillings,
"charge plateaux" appear in the - plot, where diverges and
the Mott insulating states are realized. To see how the orbital polarization in
the one-quarter charge plateau develops, we apply the second-order perturbation
theory from the strong-coupling limit at quarter filling. The resultant
Kugel-Khomskii spin-orbital model includes a field coupled to
orbital pseudo-spins. This field originates from the discrepancy between the
two bandwidths and leads to a finite orbital pseudo-spin magnetization.Comment: 4 pages, 2 figures, Proceedings of LT2
Renormalized Harmonic-Oscillator Description of Confined Electron Systems with Inverse-Square Interaction
An integrable model for SU() electrons with inverse-square interaction
is studied for the system with confining harmonic potential. We develop a new
description of the spectrum based on the {\it renormalized
harmonic-oscillators} which incorporate interaction effects via the repulsion
of energy levels. This approach enables a systematic treatment of the
excitation spectrum as well as the ground-state quantities.Comment: RevTex, 7 page
How are Forbush decreases related to interplanetary magnetic field enhancements ?
Aims. Forbush decrease (FD) is a transient decrease followed by a gradual
recovery in the observed galactic cosmic ray intensity. We seek to understand
the relationship between the FDs and near-Earth interplanetary magnetic field
(IMF) enhancements associated with solar coronal mass ejections (CMEs).
Methods. We use muon data at cutoff rigidities ranging from 14 to 24 GV from
the GRAPES-3 tracking muon telescope to identify FD events. We select those FD
events that have a reasonably clean profile, and magnitude > 0.25%. We use IMF
data from ACE/WIND spacecrafts. We look for correlations between the FD profile
and that of the one hour averaged IMF. We ask if the diffusion of high energy
protons into the large scale magnetic field is the cause of the lag observed
between the FD and the IMF. Results. The enhancement of the IMF associated with
FDs occurs mainly in the shock-sheath region, and the turbulence level in the
magnetic field is also enhanced in this region. The observed FD profiles look
remarkably similar to the IMF enhancement profiles. The FDs typically lag the
IMF enhancement by a few hours. The lag corresponds to the time taken by high
energy protons to diffuse into the magnetic field enhancement via cross-field
diffusion. Conclusions. Our findings show that high rigidity FDs associated
with CMEs are caused primarily by the cumulative diffusion of protons across
the magnetic field enhancement in the turbulent sheath region between the shock
and the CME.Comment: accepted in A&
Spin fluctuations and superconductivity in noncentrosymmetric heavy fermion systems CeRhSi and CeIrSi
We study the normal and the superconducting properties in noncentrosymmetric
heavy fermion superconductors CeRhSi and CeIrSi. For the normal state,
we show that experimentally observed linear temperature dependence of the
resistivity is understood through the antiferromagnetic spin fluctuations near
the quantum critical point (QCP) in three dimensions. For the superconducting
state, we derive a general formula to calculate the upper critical field
, with which we can treat the Pauli and the orbital depairing effect on
an equal footing. The strong coupling effect for general electronic structures
is also taken into account. We show that the experimentally observed features
in , the huge value up to 30(T), the downward
curvatures, and the strong pressure dependence, are naturally understood as an
interplay of the Rashba spin-orbit interaction due to the lack of inversion
symmetry and the spin fluctuations near the QCP. The large anisotropy between
and is explained in terms of
the spin-orbit interaction. Furthermore, a possible realization of the
Fulde-Ferrell- Larkin-Ovchinnikov state for is studied. We
also examine effects of spin-flip scattering processes in the pairing
interaction and those of the applied magnetic field on the spin fluctuations.
We find that the above mentioned results are robust against these effects. The
consistency of our results strongly supports the scenario that the
superconductivity in CeRhSi and CeIrSi is mediated by the spin
fluctuations near the QCP.Comment: 21pages, 13figures, to be published in Phys. Rev.
- …