5,973 research outputs found

    Energy-momentum and angular momentum densities in gauge theories of gravity

    Get PDF
    In the \bar{\mbox{\rm Poincar\'{e}}} gauge theory of gravity, which has been formulated on the basis of a principal fiber bundle over the space-time manifold having the covering group of the proper orthochronous Poincar\'{e} group as the structure group, we examine the tensorial properties of the dynamical energy-momentum density GTkμ{}^{G}{\mathbf T}_{k}{}^{\mu} and the ` ` spin" angular momentum density GSklμ{}^{G}{\mathbf S}_{kl}{}^{\mu} of the gravitational field. They are both space-time vector densities, and transform as tensors under {\em global} SL(2,C)SL(2,C)- transformations. Under {\em local} internal translation, GTkμ{}^{G}{\mathbf T}_{k}{}^{\mu} is invariant, while GSklμ{}^{G}{\mathbf S}_{kl}{}^{\mu} transforms inhomogeneously. The dynamical energy-momentum density MTkμ{}^{M}{\mathbf T}_{k}{}^{\mu} and the ` ` spin" angular momentum density MSklμ{}^{M}{\mathbf S}_{kl}{}^{\mu} of the matter field are also examined, and they are known to be space-time vector densities and to obey tensorial transformation rules under internal \bar{\mbox{\rm Poincar\'{e}}} gauge transformations. The corresponding discussions in extended new general relativity which is obtained as a teleparallel limit of \bar{\mbox{\rm Poincar\'{e}}} gauge theory are also given, and energy-momentum and ` ` spin" angular momentum densities are known to be well behaved. Namely, they are all space-time vector densities, etc. In both theories, integrations of these densities on a space-like surface give the total energy-momentum and {\em total} (={\em spin}+{\em orbital}) angular momentum for asymptotically flat space-time. The tensorial properties of canonical energy-momentum and ` ` extended orbital angular momentum" densities are also examined.Comment: 18 page

    The boundary states and correlation functions of the tricritical Ising model from the Coulomb-gas formalism

    Full text link
    We consider the minimal conformal model describing the tricritical Ising model on the disk and on the upper half plane. Using the coulomb-gas formalism we determine its consistents boundary states as well as its 1-point and 2-point correlation functions.Comment: 20 pages, no figure. Version 2:A paragraph for the calculation of the 2-point correlators was added. Some typos and garammatical errors were corrected.Version 3: Equations 24 are modified. Version 4 : new introduction and minor correction

    The Boundary Conformal Field Theories of the 2D Ising critical points

    Full text link
    We present a new method to identify the Boundary Conformal Field Theories (BCFTs) describing the critical points of the Ising model on the strip. It consists in measuring the low-lying excitation energies spectra of its quantum spin chain for different boundary conditions and then to compare them with those of the different boundary conformal field theories of the (A2,A3)(A_2,A_3) minimal model.Comment: 7 pages, no figures. Talk given at the XXth International Conference on Integrable Systems and Quantum Symmetries (ISQS-20). Prague, June 201

    Space-Time and Matter in IIB Matrix Model - gauge symmetry and diffeomorphism -

    Get PDF
    We pursue the study of the type IIB matrix model as a constructive definition of superstring. In this paper, we justify the interpretation of space-time as distribution of eigenvalues of the matrices by showing that some low energy excitations indeed propagate in it. In particular, we show that if the distribution consists of small clusters of size nn, low energy theory acquires local SU(n) gauge symmetry and a plaquette action for the associated gauge boson is induced, in addition to a gauge invariant kinetic term for a massless fermion in the adjoint representation of the SU(n). We finally argue a possible identification of the diffeomorphism symmetry with permutation group acting on the set of eigenvalues, and show that the general covariance is realized in the low energy effective theory even though we do not have a manifest general covariance in the IIB matrix model action.Comment: 25 page

    Poincar\'{e} gauge theory of gravity

    Full text link
    A Poincar\'{e} gauge theory of (2+1)-dimensional gravity is developed. Fundamental gravitational field variables are dreibein fields and Lorentz gauge potentials, and the theory is underlain with the Riemann-Cartan space-time. The most general gravitational Lagrangian density, which is at most quadratic in curvature and torsion tensors and invariant under local Lorentz transformations and under general coordinate transformations, is given. Gravitational field equations are studied in detail, and solutions of the equations for weak gravitational fields are examined for the case with a static, \lq \lq spin"less point like source. We find, among other things, the following: (1)Solutions of the vacuum Einstein equation satisfy gravitational field equations in the vacuum in this theory. (2)For a class of the parameters in the gravitational Lagrangian density, the torsion is \lq \lq frozen" at the place where \lq \lq spin" density of the source field is not vanishing. In this case, the field equation actually agrees with the Einstein equation, when the source field is \lq \lq spin"less. (3)A teleparallel theory developed in a previous paper is \lq \lq included as a solution" in a limiting case. (4)A Newtonian limit is obtainable, if the parameters in the Lagrangian density satisfy certain conditions.Comment: 27pages, RevTeX, OCU-PHYS-15

    Treating cisplatin-resistant cancer: a systematic analysis of oxaliplatin or paclitaxel salvage chemotherapy

    Get PDF
    Objective: To examine the pre-clinical and clinical evidence for the use of oxaliplatin or paclitaxel salvage chemotherapy in patients with cisplatin-resistant cancer. Methods: Medline was searched for 1) Cell models of acquired resistance reporting cisplatin, oxaliplatin and paclitaxel sensitivities and 2) Clinical trials of single agent oxaliplatin or paclitaxel salvage therapy for cisplatin/carboplatin-resistant ovarian cancer. Results: Oxaliplatin - Oxaliplatin is widely regarded as being active in cisplatin-resistant cancer. In contrast, data in cell models suggests that there is cross-resistance between cisplatin and oxaliplatin in cellular models with resistance levels which reflect clinical resistance (<10 fold). Oxaliplatin as a single agent had a poor response rate in patients with cisplatin-resistant ovarian cancer (8%, n=91). Oxaliplatin performed better in combination with other agents for the treatment of platinum-resistant cancer suggesting that the benefit of oxaliplatin may lie in its more favourable toxicity and ability to be combined with other drugs rather than an underlying activity in cisplatin resistance. Oxaliplatin therefore should not be considered broadly active in cisplatin-resistant cancer. Paclitaxel – Cellular data suggests that paclitaxel is active in cisplatin-resistant cancer. 68.1% of cisplatin-resistant cells were sensitive to paclitaxel. Paclitaxel as a single agent had a response rate of 22% in patients with platinum-resistant ovarian cancer (n = 1918), a significant increase from the response of oxaliplatin (p<0.01). Paclitaxel-resistant cells were also sensitive to cisplatin, suggesting that alternating between agents may be beneficial. Studies of single agent paclitaxel in platinum-resistant ovarian cancer where patients had previously received paclitaxel had an improved response rate of 35.3% n=232 (p<0.01), suggesting that pre-treatment with paclitaxel improves the response of salvage paclitaxel therapy. Conclusions: Cellular models reflect the resistance observed in the clinic as the cross resistant agent oxaliplatin has a lower response rate compared to the non-cross resistant agent paclitaxel in cisplatin-resistant ovarian cancer. Alternating therapy with cisplatin and paclitaxel may therefore lead to an improved response rate in ovarian cancer

    Macroscopic limit cycle via pure noise-induced phase transition

    Full text link
    Bistability generated via a pure noise-induced phase transition is reexamined from the view of bifurcations in macroscopic cumulant dynamics. It allows an analytical study of the phase diagram in more general cases than previous methods. In addition using this approach we investigate patially-extended systems with two degrees of freedom per site. For this system, the analytic solution of the stationary Fokker-Planck equation is not available and a standard mean field approach cannot be used to find noise induced phase transitions. A new approach based on cumulant dynamics predicts a noise-induced phase transition through a Hopf bifurcation leading to a macroscopic limit cycle motion, which is confirmed by numerical simulation.Comment: 8 pages, 8 figure

    Scaling and the Fractal Geometry of Two-Dimensional Quantum Gravity

    Get PDF
    We examine the scaling of geodesic correlation functions in two-dimensional gravity and in spin systems coupled to gravity. The numerical data support the scaling hypothesis and indicate that the quantum geometry develops a non-perturbative length scale. The existence of this length scale allows us to extract a Hausdorff dimension. In the case of pure gravity we find d_H approx. 3.8, in support of recent theoretical calculations that d_H = 4. We also discuss the back-reaction of matter on the geometry.Comment: 16 pages, LaTeX format, 8 eps figure

    Structure of Dark Matter Halos From Hierarchical Clustering. III. Shallowing of The Inner Cusp

    Full text link
    We investigate the structure of the dark matter halo formed in the cold dark matter scenarios by N-body simulations with parallel treecode on GRAPE cluster systems. We simulated 8 halos with the mass of 4.4×1014M4.4\times 10^{14}M_{\odot} to 1.6×1015M1.6\times 10^{15}M_{\odot} in the SCDM and LCDM model using up to 30 million particles. With the resolution of our simulations, the density profile is reliable down to 0.2 percent of the virial radius. Our results show that the slope of inner cusp within 1 percent virial radius is shallower than -1.5, and the radius where the shallowing starts exhibits run-to-run variation, which means the innermost profile is not universal.Comment: 26 pages, 16 fugures, submitted to Ap
    corecore