57 research outputs found

    Investigation of C60 Epitaxial Growth Mechanism on GaAs Substrates

    Get PDF

    Daily Assistive Modular Robot Design Based on Multi-Objective Black-Box Optimization

    Full text link
    The range of robot activities is expanding from industries with fixed environments to diverse and changing environments, such as nursing care support and daily life support. In particular, autonomous construction of robots that are personalized for each user and task is required. Therefore, we develop an actuator module that can be reconfigured to various link configurations, can carry heavy objects using a locking mechanism, and can be easily operated by human teaching using a releasing mechanism. Given multiple target coordinates, a modular robot configuration that satisfies these coordinates and minimizes the required torque is automatically generated by Tree-structured Parzen Estimator (TPE), a type of black-box optimization. Based on the obtained results, we show that the robot can be reconfigured to perform various functions such as moving monitors and lights, serving food, and so on.Comment: Accepted at IROS2023, website - https://haraduka.github.io/auto-modular-design

    A method for Selecting Scenes and Emotion-based Descriptions for a Robot's Diary

    Full text link
    In this study, we examined scene selection methods and emotion-based descriptions for a robot's daily diary. We proposed a scene selection method and an emotion description method that take into account semantic and affective information, and created several types of diaries. Experiments were conducted to examine the change in sentiment values and preference of each diary, and it was found that the robot's feelings and impressions changed more from date to date when scenes were selected using the affective captions. Furthermore, we found that the robot's emotion generally improves the preference of the robot's diary regardless of the scene it describes. However, presenting negative or mixed emotions at once may decrease the preference of the diary or reduce the robot's robot-likeness, and thus the method of presenting emotions still needs further investigation.Comment: 6 pages, 5 figures, ROMAN 202

    Recognition of Heat-Induced Food State Changes by Time-Series Use of Vision-Language Model for Cooking Robot

    Full text link
    Cooking tasks are characterized by large changes in the state of the food, which is one of the major challenges in robot execution of cooking tasks. In particular, cooking using a stove to apply heat to the foodstuff causes many special state changes that are not seen in other tasks, making it difficult to design a recognizer. In this study, we propose a unified method for recognizing changes in the cooking state of robots by using the vision-language model that can discriminate open-vocabulary objects in a time-series manner. We collected data on four typical state changes in cooking using a real robot and confirmed the effectiveness of the proposed method. We also compared the conditions and discussed the types of natural language prompts and the image regions that are suitable for recognizing the state changes.Comment: Accepted at IAS18-202

    Binary State Recognition by Robots using Visual Question Answering of Pre-Trained Vision-Language Model

    Full text link
    Recognition of the current state is indispensable for the operation of a robot. There are various states to be recognized, such as whether an elevator door is open or closed, whether an object has been grasped correctly, and whether the TV is turned on or off. Until now, these states have been recognized by programmatically describing the state of a point cloud or raw image, by annotating and learning images, by using special sensors, etc. In contrast to these methods, we apply Visual Question Answering (VQA) from a Pre-Trained Vision-Language Model (PTVLM) trained on a large-scale dataset, to such binary state recognition. This idea allows us to intuitively describe state recognition in language without any re-training, thereby improving the recognition ability of robots in a simple and general way. We summarize various techniques in questioning methods and image processing, and clarify their properties through experiments

    VQA-based Robotic State Recognition Optimized with Genetic Algorithm

    Full text link
    State recognition of objects and environment in robots has been conducted in various ways. In most cases, this is executed by processing point clouds, learning images with annotations, and using specialized sensors. In contrast, in this study, we propose a state recognition method that applies Visual Question Answering (VQA) in a Pre-Trained Vision-Language Model (PTVLM) trained from a large-scale dataset. By using VQA, it is possible to intuitively describe robotic state recognition in the spoken language. On the other hand, there are various possible ways to ask about the same event, and the performance of state recognition differs depending on the question. Therefore, in order to improve the performance of state recognition using VQA, we search for an appropriate combination of questions using a genetic algorithm. We show that our system can recognize not only the open/closed of a refrigerator door and the on/off of a display, but also the open/closed of a transparent door and the state of water, which have been difficult to recognize.Comment: Accepted at ICRA202
    corecore