1 research outputs found

    Effect of Initial Seeding Density on Human Umbilical Cord Mesenchymal Stromal Cells for Fibrocartilage Tissue Engineering

    No full text
    Cells derived from Wharton's jelly from human umbilical cords (called umbilical cord mesenchymal stromal cells herein) are a novel cell source for musculoskeletal tissue engineering. In this study, we examined the effects of different seeding densities on seeding efficiency, cell proliferation, biosynthesis, mechanical integrity, and chondrogenic differentiation. Cells were seeded on non-woven polyglycolic acid (PGA) meshes in an orbital shaker at densities of 5, 25, or 50 million cells/mL and then statically cultured for 4 weeks in chondrogenic medium. At week 0, initial seeding density did not affect seeding efficiency. Throughout the 4-week culture period, absolute cell numbers of the 25 and 50 million-cells/mL (higher density) groups were significantly larger than in the 5 million-cells/mL (lower density) group. The presence of collagen types I and II and aggrecan was confirmed using immunohistochemical staining. Glycosaminoglycan and collagen contents per construct in the higher-density groups were significantly greater than in the lower-density group. Constructs in the high-density groups maintained their mechanical integrity, which was confirmed using unconfined compression testing. In conclusion, human umbilical cord cells demonstrated the potential for chondrogenic differentiation in three-dimensional tissue engineering, and higher seeding densities better promoted biosynthesis and mechanical integrity, and thus a seeding density of at least 25 million cells/mL is recommended for fibrocartilage tissue engineering with umbilical cord mesenchymal stromal cells
    corecore