164 research outputs found

    Chaos-guided Input Structuring for Improved Learning in Recurrent Neural Networks

    Full text link
    Anatomical studies demonstrate that brain reformats input information to generate reliable responses for performing computations. However, it remains unclear how neural circuits encode complex spatio-temporal patterns. We show that neural dynamics are strongly influenced by the phase alignment between the input and the spontaneous chaotic activity. Input structuring along the dominant chaotic projections causes the chaotic trajectories to become stable channels (or attractors), hence, improving the computational capability of a recurrent network. Using mean field analysis, we derive the impact of input structuring on the overall stability of attractors formed. Our results indicate that input alignment determines the extent of intrinsic noise suppression and hence, alters the attractor state stability, thereby controlling the network's inference ability.Comment: 11 pages with 5 figures including supplementary materia

    STDP Based Pruning of Connections and Weight Quantization in Spiking Neural Networks for Energy Efficient Recognition

    Full text link
    Spiking Neural Networks (SNNs) with a large number of weights and varied weight distribution can be difficult to implement in emerging in-memory computing hardware due to the limitations on crossbar size (implementing dot product), the constrained number of conductance levels in non-CMOS devices and the power budget. We present a sparse SNN topology where non-critical connections are pruned to reduce the network size and the remaining critical synapses are weight quantized to accommodate for limited conductance levels. Pruning is based on the power law weight-dependent Spike Timing Dependent Plasticity (STDP) model; synapses between pre- and post-neuron with high spike correlation are retained, whereas synapses with low correlation or uncorrelated spiking activity are pruned. The weights of the retained connections are quantized to the available number of conductance levels. The process of pruning non-critical connections and quantizing the weights of critical synapses is performed at regular intervals during training. We evaluated our sparse and quantized network on MNIST dataset and on a subset of images from Caltech-101 dataset. The compressed topology achieved a classification accuracy of 90.1% (91.6%) on the MNIST (Caltech-101) dataset with 3.1x (2.2x) and 4x (2.6x) improvement in energy and area, respectively. The compressed topology is energy and area efficient while maintaining the same classification accuracy of a 2-layer fully connected SNN topology.Comment: 9 pages, 8 figure

    Conditional Deep Learning for Energy-Efficient and Enhanced Pattern Recognition

    Full text link
    Deep learning neural networks have emerged as one of the most powerful classification tools for vision related applications. However, the computational and energy requirements associated with such deep nets can be quite high, and hence their energy-efficient implementation is of great interest. Although traditionally the entire network is utilized for the recognition of all inputs, we observe that the classification difficulty varies widely across inputs in real-world datasets; only a small fraction of inputs require the full computational effort of a network, while a large majority can be classified correctly with very low effort. In this paper, we propose Conditional Deep Learning (CDL) where the convolutional layer features are used to identify the variability in the difficulty of input instances and conditionally activate the deeper layers of the network. We achieve this by cascading a linear network of output neurons for each convolutional layer and monitoring the output of the linear network to decide whether classification can be terminated at the current stage or not. The proposed methodology thus enables the network to dynamically adjust the computational effort depending upon the difficulty of the input data while maintaining competitive classification accuracy. We evaluate our approach on the MNIST dataset. Our experiments demonstrate that our proposed CDL yields 1.91x reduction in average number of operations per input, which translates to 1.84x improvement in energy. In addition, our results show an improvement in classification accuracy from 97.5% to 98.9% as compared to the original network.Comment: 6 pages, 10 figures, 2 algorithms < Accepted for Design and Automation Test in Europe (DATE) conference, 2016

    A Low Effort Approach to Structured CNN Design Using PCA

    Full text link
    Deep learning models hold state of the art performance in many fields, yet their design is still based on heuristics or grid search methods that often result in overparametrized networks. This work proposes a method to analyze a trained network and deduce an optimized, compressed architecture that preserves accuracy while keeping computational costs tractable. Model compression is an active field of research that targets the problem of realizing deep learning models in hardware. However, most pruning methodologies tend to be experimental, requiring large compute and time intensive iterations of retraining the entire network. We introduce structure into model design by proposing a single shot analysis of a trained network that serves as a first order, low effort approach to dimensionality reduction, by using PCA (Principal Component Analysis). The proposed method simultaneously analyzes the activations of each layer and considers the dimensionality of the space described by the filters generating these activations. It optimizes the architecture in terms of number of layers, and number of filters per layer without any iterative retraining procedures, making it a viable, low effort technique to design efficient networks. We demonstrate the proposed methodology on AlexNet and VGG style networks on the CIFAR-10, CIFAR-100 and ImageNet datasets, and successfully achieve an optimized architecture with a reduction of up to 3.8X and 9X in the number of operations and parameters respectively, while trading off less than 1% accuracy. We also apply the method to MobileNet, and achieve 1.7X and 3.9X reduction in the number of operations and parameters respectively, while improving accuracy by almost one percentage point.Comment: To be Published in IEEE Access, Volume 8, 202

    Voltage-Driven Domain-Wall Motion based Neuro-Synaptic Devices for Dynamic On-line Learning

    Full text link
    Conventional von-Neumann computing models have achieved remarkable feats for the past few decades. However, they fail to deliver the required efficiency for certain basic tasks like image and speech recognition when compared to biological systems. As such, taking cues from biological systems, novel computing paradigms are being explored for efficient hardware implementations of recognition/classification tasks. The basic building blocks of such neuromorphic systems are neurons and synapses. Towards that end, we propose a leaky-integrate-fire (LIF) neuron and a programmable non-volatile synapse using domain wall motion induced by magneto-electric effect. Due to a strong elastic pinning between the ferro-magnetic domain wall (FM-DW) and the underlying ferro-electric domain wall (FE-DW), the FM-DW gets dragged by the FE-DW on application of a voltage pulse. The fact that FE materials are insulators allows for pure voltage-driven FM-DW motion, which in turn can be used to mimic the behaviors of biological spiking neurons and synapses. The voltage driven nature of the proposed devices allows energy-efficient operation. A detailed device to system level simulation framework based on micromagnetic simulations has been developed to analyze the feasibility of the proposed neuro-synaptic devices. We also demonstrate that the energy-efficient voltage-controlled behavior of the proposed devices make them suitable for dynamic on-line and lifelong learning in spiking neural networks (SNNs)

    ASP: Learning to Forget with Adaptive Synaptic Plasticity in Spiking Neural Networks

    Full text link
    A fundamental feature of learning in animals is the "ability to forget" that allows an organism to perceive, model and make decisions from disparate streams of information and adapt to changing environments. Against this backdrop, we present a novel unsupervised learning mechanism ASP (Adaptive Synaptic Plasticity) for improved recognition with Spiking Neural Networks (SNNs) for real time on-line learning in a dynamic environment. We incorporate an adaptive weight decay mechanism with the traditional Spike Timing Dependent Plasticity (STDP) learning to model adaptivity in SNNs. The leak rate of the synaptic weights is modulated based on the temporal correlation between the spiking patterns of the pre- and post-synaptic neurons. This mechanism helps in gradual forgetting of insignificant data while retaining significant, yet old, information. ASP, thus, maintains a balance between forgetting and immediate learning to construct a stable-plastic self-adaptive SNN for continuously changing inputs. We demonstrate that the proposed learning methodology addresses catastrophic forgetting while yielding significantly improved accuracy over the conventional STDP learning method for digit recognition applications. Additionally, we observe that the proposed learning model automatically encodes selective attention towards relevant features in the input data while eliminating the influence of background noise (or denoising) further improving the robustness of the ASP learning.Comment: 14 pages, 14 figure

    Implicit Generative Modeling of Random Noise during Training for Adversarial Robustness

    Full text link
    We introduce a Noise-based prior Learning (NoL) approach for training neural networks that are intrinsically robust to adversarial attacks. We find that the implicit generative modeling of random noise with the same loss function used during posterior maximization, improves a model's understanding of the data manifold furthering adversarial robustness. We evaluate our approach's efficacy and provide a simplistic visualization tool for understanding adversarial data, using Principal Component Analysis. Our analysis reveals that adversarial robustness, in general, manifests in models with higher variance along the high-ranked principal components. We show that models learnt with our approach perform remarkably well against a wide-range of attacks. Furthermore, combining NoL with state-of-the-art adversarial training extends the robustness of a model, even beyond what it is adversarially trained for, in both white-box and black-box attack scenarios.Comment: Preliminary version of this work accepted at ICML 2019 (Workshop on Uncertainty and Robustness in Deep Learning

    Magnetic Tunnel Junction Mimics Stochastic Cortical Spiking Neurons

    Full text link
    Brain-inspired computing architectures attempt to mimic the computations performed in the neurons and the synapses in the human brain in order to achieve its efficiency in learning and cognitive tasks. In this work, we demonstrate the mapping of the probabilistic spiking nature of pyramidal neurons in the cortex to the stochastic switching behavior of a Magnetic Tunnel Junction in presence of thermal noise. We present results to illustrate the efficiency of neuromorphic systems based on such probabilistic neurons for pattern recognition tasks in presence of lateral inhibition and homeostasis. Such stochastic MTJ neurons can also potentially provide a direct mapping to the probabilistic computing elements in Belief Networks for performing regenerative tasks.Comment: The article will appear in Scientific Report

    Energy-Efficient Object Detection using Semantic Decomposition

    Full text link
    Machine-learning algorithms offer immense possibilities in the development of several cognitive applications. In fact, large scale machine-learning classifiers now represent the state-of-the-art in a wide range of object detection/classification problems. However, the network complexities of large-scale classifiers present them as one of the most challenging and energy intensive workloads across the computing spectrum. In this paper, we present a new approach to optimize energy efficiency of object detection tasks using semantic decomposition to build a hierarchical classification framework. We observe that certain semantic information like color/texture are common across various images in real-world datasets for object detection applications. We exploit these common semantic features to distinguish the objects of interest from the remaining inputs (non-objects of interest) in a dataset at a lower computational effort. We propose a 2-stage hierarchical classification framework, with increasing levels of complexity, wherein the first stage is trained to recognize the broad representative semantic features relevant to the object of interest. The first stage rejects the input instances that do not have the representative features and passes only the relevant instances to the second stage. Our methodology thus allows us to reject certain information at lower complexity and utilize the full computational effort of a network only on a smaller fraction of inputs to perform detection. We use color and texture as distinctive traits to carry out several experiments for object detection. Our experiments on the Caltech101/CIFAR10 dataset show that the proposed method yields 1.93x/1.46x improvement in average energy, respectively, over the traditional single classifier model.Comment: 10 pages, 13 figures, 3 algorithms, Submitted to IEEE TVLSI(Under Review

    Synthesizing Images from Spatio-Temporal Representations using Spike-based Backpropagation

    Full text link
    Spiking neural networks (SNNs) offer a promising alternative to current artificial neural networks to enable low-power event-driven neuromorphic hardware. Spike-based neuromorphic applications require processing and extracting meaningful information from spatio-temporal data, represented as series of spike trains over time. In this paper, we propose a method to synthesize images from multiple modalities in a spike-based environment. We use spiking auto-encoders to convert image and audio inputs into compact spatio-temporal representations that is then decoded for image synthesis. For this, we use a direct training algorithm that computes loss on the membrane potential of the output layer and back-propagates it by using a sigmoid approximation of the neuron's activation function to enable differentiability. The spiking autoencoders are benchmarked on MNIST and Fashion-MNIST and achieve very low reconstruction loss, comparable to ANNs. Then, spiking autoencoders are trained to learn meaningful spatio-temporal representations of the data, across the two modalities - audio and visual. We synthesize images from audio in a spike-based environment by first generating, and then utilizing such shared multi-modal spatio-temporal representations. Our audio to image synthesis model is tested on the task of converting TI-46 digits audio samples to MNIST images. We are able to synthesize images with high fidelity and the model achieves competitive performance against ANNs.Comment: 17 pages, 10 Figures, 1 tabl
    • …
    corecore