221 research outputs found

    Neutrino oscillations in matter of varying density

    Full text link
    We consider two-family neutrino oscillations in a medium of continuously-varying density as a limit of the process in a series of constant-density layers. We construct analytic expressions for the conversion amplitude at high energies within a medium with a density profile that is piecewise linear. We compare some cases to understand the type of effects that depend on the order of the material traversed by a neutrino beam.Comment: 10 page

    Neutrino Oscillations and Lepton Flavor Mixing

    Get PDF
    In view of the recent announcement on non-zero neutrino mass from Super-Kamiokande experiment, it would be very timely to investigate all the possible scenarios on masses and mixings of light neutrinos. Recently suggested mass matrix texture for the quark CKM mixing, which can be originated from the family permutation symmetry and its suitable breakings, is assumed for the neutrino mass matrix and determined by the four combinations of solar, atmospheric and LSND neutrino data and cosmological hot dark matter bound as input constraints. The charged-lepton mass matrix is assumed to be diagonal so that the neutrino mixing matrix can be identified directly as the lepton flavor mixing matrix and no CP invariance violation originates from the leptonic sector. The results favor hierarchical patterns for the neutrino masses, which follow from the case when either solar-atmospheric data or solar-HDM constraints are used.Comment: Latex, 9 page

    Model of the Quark Mixing Matrix

    Full text link
    The structure of the Cabibbo-Kobayashi-Maskawa (CKM) matrix is analyzed from the standpoint of a composite model. A model is constructed with three families of quarks, by taking tensor products of sufficient numbers of spin-1/2 representations and imagining the dominant terms in the mass matrix to arise from spin-spin interactions. Generic results then obtained include the familiar relation Vus=(md/ms)1/2(mu/mc)1/2|V_{us}| = (m_d/m_s)^{1/2} - (m_u/m_c)^{1/2}, and a less frequently seen relation Vcb=2[(ms/mb)(mc/mt)]|V_{cb}| = \sqrt{2} [(m_s/m_b) - (m_c/m_t)]. The magnitudes of VubV_{ub} and VtdV_{td} come out naturally to be of the right order. The phase in the CKM matrix can be put in by hand, but its origin remains obscure.Comment: Presented by Mihir P. Worah at DPF 92 Meeting, Fermilab, November, 1992. 3 pages, LaTeX fil

    Test of the Dimopouos-Hall-Raby Ansatz for Fermion Mass Matrices

    Full text link
    By evolution of fermion mass matrices of the Fritzsch and the Georgi-Jarlskog forms from the supersymmetric grand unified scale, DHR obtained predictions for the quark masses and mixings. Using Monte Carlo methods we test these predictions against the latest determinations of the mixings, the CP-violating parameter epsilon_K and the B_d^0--Bbar_d^0 mixing parameter r_d. The acceptable solutions closely specify the quark masses and mixings, but lie at the edges of allowed regions at 90% confidence level.Comment: 11 pages, 1 figure (not included

    Neutrino masses from universal Fermion mixing

    Get PDF
    If three right-handed neutrinos are added to the Standard Model, then, for the three known generations, there are six quarks and six leptons. It is then natural to assume that the symmetry considerations that have been applied to the quark matrices are also valid for the lepton mass matrices. Under this assumption, the solar and atmospheric neutrino data can be used to determine the individual neutrino masses. Using the \chi^2 fit, it is found that the mass of the lightest neutrino is (2-5)\times10^{-3} eV, that of the next heavier neutrino is (10-13)\times10^{-3} eV, while the mass of the heaviest neutrino is (52-54)\times10^{-3} eV.Comment: 27 pages, LaTeX, including several figure

    On neutrino masses and leptonic mixing

    Full text link
    Using recent data on neutrino oscillations, we argue that a hierarchical solution for neutrino masses in a three-family context is possible, and that the masses of the tau and mu neutrinos are very nearly determined within that possibility. We also examine the predictions of a model that determines neutrino and charged lepton mass matrices as well as its consistency with data.Comment: 13 pages, 6 figures, technical change to pdf, figures include

    Large Lepton Mixings from Continuous Symmetries

    Get PDF
    Within the broad context of quark-lepton unification, we investigate the implications of broken continuous family symmetries which result from requiring that in the limit of exact symmetry, the Dirac mass matrices yield hierarchical masses for the quarks and charged leptons, but lead to degenerate light neutrino masses as a consequence of the seesaw mechanism, without requiring hierarchical right-handed neutrino mass terms. Quark mixing is then naturally small and proportional to the size of the perturbation, but lepton mixing is large as a result of degenerate perturbation theory, shifted from maximal mixing by the size of the perturbation. Within this approach, we study an illustrative two-family prototype model with an SO(2) family symmetry, and discuss extensions to three-family models.Comment: 23 page

    A proposed framework for consensus-based lung tumour volume auto-segmentation in 4D computed tomography imaging.

    Get PDF
    This work aims to propose and validate a framework for tumour volume auto-segmentation based on ground-truth estimates derived from multi-physician input contours to expedite 4D-CT based lung tumour volume delineation. 4D-CT datasets of ten non-small cell lung cancer (NSCLC) patients were manually segmented by 6 physicians. Multi-expert ground truth (GT) estimates were constructed using the STAPLE algorithm for the gross tumour volume (GTV) on all respiratory phases. Next, using a deformable model-based method, multi-expert GT on each individual phase of the 4D-CT dataset was propagated to all other phases providing auto-segmented GTVs and motion encompassing internal gross target volumes (IGTVs) based on GT estimates (STAPLE) from each respiratory phase of the 4D-CT dataset. Accuracy assessment of auto-segmentation employed graph cuts for 3D-shape reconstruction and point-set registration-based analysis yielding volumetric and distance-based measures. STAPLE-based auto-segmented GTV accuracy ranged from (81.51  ±  1.92) to (97.27  ±  0.28)% volumetric overlap of the estimated ground truth. IGTV auto-segmentation showed significantly improved accuracies with reduced variance for all patients ranging from 90.87 to 98.57% volumetric overlap of the ground truth volume. Additional metrics supported these observations with statistical significance. Accuracy of auto-segmentation was shown to be largely independent of selection of the initial propagation phase. IGTV construction based on auto-segmented GTVs within the 4D-CT dataset provided accurate and reliable target volumes compared to manual segmentation-based GT estimates. While inter-/intra-observer effects were largely mitigated, the proposed segmentation workflow is more complex than that of current clinical practice and requires further development
    corecore