39 research outputs found

    Paratope plasticity in diverse modes facilitates molecular mimicry in antibody response

    Get PDF
    The immune response against methyl-α -D-mannopyranoside mimicking 12-mer peptide (DVFYPYPYASGS) was analyzed at the molecular level towards understanding the equivalence of these otherwise disparate Ags. The Ab 7C4 recognized the immunizing peptide and its mimicking carbohydrate Ag with comparable affinities. Thermodynamic analyses of the binding interactions of both molecules suggested that the mAb 7C4 paratope lacks substantial conformational flexibility, an obvious possibility for facilitating binding to chemically dissimilar Ags. Favorable changes in entropy during binding indicated the importance of hydrophobic interactions in recognition of the mimicking carbohydrate Ag. Indeed, the topology of the Ag-combining site was dominated by a cluster of aromatic residues, contributed primarily by the specificity defining CDR H3. Epitope-mapping analysis demonstrated the critical role of three aromatic residues of the 12-mer in binding to the Ab. Our studies delineate a mechanism by which mimicry is manifested in the absence of either structural similarity of the epitopes or conformational flexibility in the paratope. An alternate mode of recognition of dissimilar yet mimicking Ags by the anti-peptide Ab involves plasticity associated with aromatic/hydrophobic and van der Waals interactions. Thus, antigenic mimicry may be a consequence of paratope-specific modulations rather than being dependent only on the properties of the epitope. Such modulations may have evolved toward minimizing the consequences of antigenic variation by invading pathogens

    Identification and characterization of EhCaBP2: a second member of the calcium-binding protein family of the protozoan parasite entamoeba histolytica

    Get PDF
    Entamoeba histolytica, an early branching eukaryote, is the etiologic agent of amebiasis. Calcium plays a pivotal role in the pathogenesis of amebiasis by modulating the cytopathic properties of the parasite. However, the mechanistic role of Ca2+ and calcium-binding proteins in the pathogenesis of E. histolytica remains poorly understood. We had previously characterized a novel calcium-binding protein (EhCaBP1) from E. histolytica. Here, we report the identification and partial characterization of an isoform of this protein, EhCaBP2. Both EhCaBPs have four canonical EF-hand Ca2+ binding domains. The two isoforms are encoded by genes of the same size (402 bp). Comparison between the two genes showed an overall identity of 79% at the nucleotide sequence level. This identity dropped to 40% in the 75-nucleotide central linker region between the second and third Ca2+ binding domains. Both of these genes are single copy, as revealed by Southern hybridization. Analysis of the available E. histolytica genome sequence data suggested that the two genes are non-allelic. Homology-based structural modeling showed that the major differences between the two EhCaBPs lie in the central linker region, normally involved in binding target molecules. A number of studies indicated that EhCaBP1 and EhCaBP2 are functionally different. They bind different sets of E. histolytica proteins in a Ca2+-dependent manner. Activation of endogenous kinase was also found to be unique for the two proteins and the Ca2+ concentration required for their optimal functionality was also different. In addition, a 12-mer peptide was identified from a random peptide library that could differentially bind the two proteins. Our data suggest that EhCaBP2 is a new member of a class of E. histolytica calcium-binding proteins involved in a novel calcium signal transduction pathway

    Mimicry of native peptide antigens by the corresponding retro-inverso analogs is dependent on their intrinsic structure and interaction propensities

    Get PDF
    Retro-inverso (ri) analogs of model T cell and B cell epitopes were predictively designed as mimics and then assayed for activity to understand the basis of functional ri-antigenic peptide mimicry. ri versions of two MHC class I binding peptide epitopes, one from a vesicular stomatitis virus glycoprotein (VSVp) and another from OVA (OVAp), exhibit structural as well as functional mimicry of their native counterparts. The two ri peptides exhibit conformational plasticity and they bind to MHC class I (H-2Kb) similar to their native counterparts both in silico and in vivo. In fact, ri-OVAp is also presented to an OVAp-specific T cell line in a mode similar to native OVAp. In contrast, the ri version of an immunodominant B cell peptide epitope from a hepatitis B virus protein, PS1, exhibits no structural or functional correlation with its native counterpart. PS1 and its ri analog do not exhibit similar conformational propensities. PS1 is less flexible relative to its ri version. These observed structure-function relationships of the ri-peptide epitopes are consistent with the differences in recognition properties between peptide-MHC vs peptide-Ab binding where, while the recognition of the epitope by MHC is pattern based, the exquisitely specific recognition of Ag by Ab arises from the high complementarity between the Ag and the binding site of the Ab. It is evident that the correlation of conformational and interaction propensities of native L-peptides and their ri counterparts depends both on their inherent structural properties and on their mode of recognition

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Design of a functionally equivalent nonglycosylated analog of the glycopeptide antibiotic formaecin I

    Get PDF
    Various nonglycosylated analogs were designed in order to explore the role of glycosylation in formaecin I, an antibacterial glycopeptide of insect origin. The functional behavior of a designed nonglycosylated analog (P7,endo P8a,ΔT11)formaecin I was found to be similar to that of native glycosylated peptide. Both the peptides showed similar antibacterial activities against Escherichia coli and Salmonella strains. The designed nonglycosylated analog (P7,endo P8a,ΔT11)formaecin I has low binding affinity to LPS identical to that of native glycopeptide, formaecin I. Both the peptides have similar killing kinetics and are nontoxic to erythrocytes. Formaecin I and designed nonglycosylated (P7,endo P8a,ΔT11)formaecin I have no definite conformational features associated with them. The glycosylated residue of threonine in formaecin I and proline residues in designed peptide [(P7,endo P8a,ΔT11)formaecin I], possibly help in stabilizing the correct conformation that facilitates presentation of the peptide to its receptor. It is evident that a functionally equivalent nonglycosylated analog of native glycosylated antibacterial peptide can be designed by strategically modifying the sequence

    Topological analysis of the functional mimicry between a peptide and a carbohydrate moiety

    No full text
    The shared surface topology of two chemically dissimilar but functionally equivalent molecular structures has been analyzed. A carbohydrate moiety (α -D-mannopyranoside) and a peptide molecule (DVFYPYPYASGS) bind to concanavalin A at a common binding site. The cross-reactivity of the polyclonal antibodies (pAbs) was used for understanding the topological relationship between these two independent ligands. The anti-α-D-mannopyranoside pAbs recognized various peptide ligands of concanavalin A, and the anti-DVFYPYPYASGS pAbs recognized the carbohydrate ligands, providing direct evidence of molecular mimicry. On the basis of differential binding of various rationally designed peptide analogs to the anti-α-D-mannopyranoside pAbs, it was possible to identify different peptide residues critical for the mimicry. The comparison of circular dichroism profiles of the designed analogs suggests that the carbohydrate mimicking conformation of the peptide ligand incorporates a polyproline type II structural fold. The concanavalin A binding activity of these analogs was found to have a direct correlation with the topological relationship between peptide and carbohydrate ligands

    A Novel Pregnane Ester Tetraglycoside from Orthenthera viminea

    No full text

    Role of Antibody Paratope Conformational Flexibility in the Manifestation of Molecular Mimicry

    Get PDF
    Molecular mimicry is a recurrent theme in host defense processes. The correlation of functional mimicry with the structural features of the antibody paratope has been investigated, addressing the consequences of mimicry in host immune mechanisms. Two anti-mannopyranoside antibodies, 1H7 and 2D10, representing the possible extremes of the recognition spectrum with regard to peptide-carbohydrate mimicry were examined. Crystallographic and molecular dynamics simulation analyses established correlation between the antibody flexibility and the manifestation of mimicry. It was evident that monoclonal antibody (mAb) 1H7, which has a narrow specificity in favor of the immunizing antigen, exhibited structural invariance. On the other hand, the antigen-combining site of 2D10, the mimicry-recognizing antibody, showed substantial divergence in the complementarity determining region loops. The docking of mannopyranoside within the antibody paratope revealed multiple modes of binding of the carbohydrate antigen in mAb 2D10 vis à vis single docking mode in mAb 1H7, which overlapped with the common monosaccharide binding site defined in anti-carbohydrate antibodies. The presence of additional antigen binding modes is perhaps reflective of the utilization of conformational flexibility in molecular mimicry. A relatively broader recognition repertoire—attributable to paratope flexibility—may facilitate the recognition of altered antigens of invading pathogens while the antibodies with narrow recognition specificity maintain the fidelity of the response

    Plasticity in structure and interactions is critical for the action of indolicidin, an antibacterial peptide of innate immune origin

    No full text
    The comparative analysis of two cationic antibacterial peptides of the cathelicidin family—indolicidin and tritrypticin—enabled addressing the structural features critical for the mechanism of indolicidin activity. Functional behavior of retro-indolicidin was found to be identical to that of native indolicidin. It is apparent that the gross conformational propensities associated with retro-peptides resemble those of the native sequences, suggesting that native and retro-peptides can have similar structures. Both the native and the retro-indolicidin show identical affinities while binding to endotoxin, the initial event associated with the antibacterial activity of cationic peptide antibiotics. The indolicidin–endotoxin binding was modeled by docking the indolicidin molecule in the endotoxin structure. The conformational flexibility associated with the indolicidin residues, as well as that of the fatty acid chains of endotoxin combined with the relatively strong structural interactions, such as ionic and hydrophobic, provide the basis for the endotoxin–peptide recognition. Thus, the key feature of the recognition between the cationic antibacterial peptides and endotoxin is the plasticity of molecular interactions, which may have been designed for the purpose of maintaining activity against a broad range of organisms, a hallmark of primitive host defense
    corecore