5 research outputs found

    The NK cell checkpoint NKG2A maintains expansion capacity of human NK cells

    Full text link
    Human natural killer (NK) cells are cytotoxic effector cells that are increasingly harnessed in cancer immunotherapy. NKG2A/CD94 is an inhibitory receptor on NK cells that has established regulatory functions in the direct interaction with target cells when engaged with its ligand, the non-classical HLA class I molecule HLA-E. Here, we confirmed NKG2A as a checkpoint molecule in primary human NK cells and identified a novel role for NKG2A in maintaining NK cell expansion capacity by dampening both proliferative activity and excessive activation-induced cell death. Maintenance of NK cell expansion capacity might contribute to the preferential accumulation of human NKG2A+^{+} NK cells after hematopoietic cell transplantation and enrichment of functionally impaired NK cells in human cancers. Functional silencing of NKG2A for cancer immunotherapy is highly attractive but will need to consider that this might also lead to a reduced survival by driving activation-induced cell death in targeted NK cells

    The NK cell checkpoint NKG2A maintains expansion capacity of human NK cells

    Get PDF
    Human natural killer (NK) cells are cytotoxic effector cells that are increasingly harnessed in cancer immunotherapy. NKG2A/CD94 is an inhibitory receptor on NK cells that has established regulatory functions in the direct interaction with target cells when engaged with its ligand, the non-classical HLA class I molecule HLA-E. Here, we confirmed NKG2A as a checkpoint molecule in primary human NK cells and identified a novel role for NKG2A in maintaining NK cell expansion capacity by dampening both proliferative activity and excessive activation-induced cell death. Maintenance of NK cell expansion capacity might contribute to the preferential accumulation of human NKG2A⁺ NK cells after hematopoietic cell transplantation and enrichment of functionally impaired NK cells in human cancers. Functional silencing of NKG2A for cancer immunotherapy is highly attractive but will need to consider that this might also lead to a reduced survival by driving activation-induced cell death in targeted NK cells

    Targeted adenovirus-mediated transduction of human T cells in vitro and in vivo

    Full text link
    Clinical success in T cell therapy has stimulated widespread efforts to increase safety and potency and to extend this technology to solid tumors. Yet progress in cell therapy remains restricted by the limited payload capacity, specificity of target cell transduction, and transgenic gene expression efficiency of applied viral vectors. This renders complex reprogramming or direct in vivo applications difficult. Here, we developed a synergistic combination of trimeric adapter constructs enabling T cell-directed transduction by the human adenoviral vector serotype C5 in vitro and in vivo. Rationally chosen binding partners showed receptor-specific transduction of otherwise non-susceptible human T cells by exploiting activation stimuli. This platform remains compatible with high-capacity vectors for up to 37 kb DNA delivery, increasing payload capacity and safety because of the removal of all viral genes. Together, these findings provide a tool for targeted delivery of large payloads in T cells as a potential avenue to overcome current limitations of T cell therapy

    Reduced frequency of cytotoxic CD56dim CD16+ NK cells leads to impaired antibody-dependent degranulation in EBV-positive classical Hodgkin lymphoma

    Full text link
    Around 30–50% of classical Hodgkin lymphoma (cHL) cases in immunocompetent individuals from industrialized countries are associated with the B-lymphotropic Epstein-Barr virus (EBV). Although natural killer (NK) cells exhibit anti-viral and anti-tumoral functions, virtually nothing is known about quantitative and qualitative differences in NK cells in patients with EBV+ cHL vs. EBV- cHL. Here, we prospectively investigated 36 cHL patients without known immune suppression or overt immunodeficiency at diagnosis. All 10 EBV+ cHL patients and 25 out 26 EBV- cHL were seropositive for EBV antibodies, and EBV+ cHL patients presented with higher plasma EBV DNA levels compared to EBV- cHL patients. We show that the CD56dim CD16+ NK cell subset was decreased in frequency in EBV+ cHL patients compared to EBV- cHL patients. This quantitative deficiency translates into an impaired CD56dim NK cell mediated degranulation toward rituximab-coated HLA class 1 negative lymphoblastoid cells in EBV+ compared to EBV- cHL patients. We finally observed a trend to a decrease in the rituximab-associated degranulation and ADCC of in vitro expanded NK cells of EBV+ cHL compared to healthy controls. Our findings may impact on the design of adjunctive treatment targeting antibody-dependent cellular cytotoxicity in EBV+ cHL

    Targeted adenovirus-mediated transduction of human T cells in vitro and in vivo

    No full text
    Clinical success in T cell therapy has stimulated widespread efforts to increase safety and potency and to extend this technology to solid tumors. Yet progress in cell therapy remains restricted by the limited payload capacity, specificity of target cell transduction, and transgenic gene expression efficiency of applied viral vectors. This renders complex reprogramming or direct in vivo applications difficult. Here, we developed a synergistic combination of trimeric adapter constructs enabling T cell-directed transduction by the human adenoviral vector serotype C5 in vitro and in vivo. Rationally chosen binding partners showed receptor-specific transduction of otherwise non-susceptible human T cells by exploiting activation stimuli. This platform remains compatible with high-capacity vectors for up to 37 kb DNA delivery, increasing payload capacity and safety because of the removal of all viral genes. Together, these findings provide a tool for targeted delivery of large payloads in T cells as a potential avenue to overcome current limitations of T cell therapy
    corecore