121 research outputs found

    Towards the growth of Cu2ZnSn1 xGexS4 thin films by a single-stage process: Effect of substrate temperature and composition

    Get PDF
    9 págs.; 7 figs.; 2 tabs.Cu2ZnSn1-xGexS4 (CZTGS) thin films prepared by flash evaporation of a Zn-rich Cu2ZnSn0.5Ge0.5S4 bulk compound in powder form, and a subsequent thermal annealing in S containing Ar atmosphere are studied. The effect of the substrate temperature during evaporation and the initial composition of the precursor powder on the growth mechanism and properties of the final CZTGS thin film are investigated. The microstructure of the films and elemental depth profiles depend strongly on the growth conditions used. Incorporation of Ge into the Cu2ZnSnS4 lattice is demonstrated by the shift of the relevant X-ray diffraction peaks and Raman vibrational modes towards higher diffraction angles and frequencies respectively. A Raman mode at around 348-351 cm-1 is identified as characteristic of CZTGS alloys for x = [Ge]/([Sn]+[Ge]) = 0.14-0.30. The supply of Ge enables the reduction of the Sn loss via a saccrifical Ge loss. This fact allows increasing the substrate temperature up to 350º C during the evaporation, forming a high quality kesterite material and therefore, reducing the deposition process to one single stage & 2015 Elsevier B.V. All rights reserved.RC acknowledges financial support from Spanish MINECO within the Ramón y Cajal programme (RYC-2011-08521) and VIR for the Juan de la Cierva fellowship (JCI-2011-10782). GB also acknowledges the CSIC-JAE Pre-doctoral Program, co-funded by the European Social Fund. This work was supported by the Marie Curie-IRSES Project (PVICOKEST, GA: 269167), Marie Curie-ITN project (KESTCELL, GA: 316488), DAAD project (INTERKEST, Ref: 57050358), and MINECO projects (SUNBEAM, ENE2013-49136-C4-3-R) (TEC2012- 38901-C02-01). A. Scheu is acknowledged for GDOES measurements.Peer Reviewe

    Towards the growth of Cu2ZnSn1-xGexS4 thin films by a single-stage process : effect of substrate temperatura and composition

    Get PDF
    Cu2ZnSn1-xGexS4 (CZTGS) thin films prepared by flash evaporation of a Zn-rich Cu2ZnSn0.5Ge0.5S4 bulk compound in powder form, and a subsequent thermal annealing in S containing Ar atmosphere are studied. The effect of the substrate temperature during evaporation and the initial composition of the precursor powder on the growth mechanism and properties of the final CZTGS thin film are investigated. The microstructure of the films and elemental depth profiles depend strongly on the growth conditions used. Incorporation of Ge into the Cu2ZnSnS4 lattice is demonstrated by the shift of the relevant X-ray diffraction peaks and Raman vibrational modes towards higher diffraction angles and frequencies respectively. A Raman mode at around 348-351 cm-1 is identified as characteristic of CZTGS alloys for x = [Ge]/([Sn]+[Ge]) = 0.14-0.30. The supply of Ge enables the reduction of the Sn loss via a saccrifical Ge loss. This fact allows increasing the substrate temperature up to 350º C during the evaporation, forming a high quality kesterite material and therefore, reducing the deposition process to one single stag

    Better the Devil that You Know: Evidence on Entry Costs Faced by Foreign Banks

    Full text link
    Institutional and legal differences between countries increase entry costs and reduce the ability of banks to expand abroad. We use bilateral foreign banking data for 176 countries to estimate a gravity model in which bilateral cross-border banking activity is explained, in addition to standard variables, by legal and institutional differences. We find that foreign banking is negatively affected by absolute differences in the legal setup and in basic institutions between source and host countries. Differences in the legal origin, for example, reduce bilateral participation in the banking system by nearly 11 percent. Additionally we do not find strong evidence suggesting asymmetries in adapting to better or worse institutional/legal environments

    Brain structural covariance networks in obsessive-compulsive disorder: a graph analysis from the ENIGMA Consortium.

    Get PDF
    Brain structural covariance networks reflect covariation in morphology of different brain areas and are thought to reflect common trajectories in brain development and maturation. Large-scale investigation of structural covariance networks in obsessive-compulsive disorder (OCD) may provide clues to the pathophysiology of this neurodevelopmental disorder. Using T1-weighted MRI scans acquired from 1616 individuals with OCD and 1463 healthy controls across 37 datasets participating in the ENIGMA-OCD Working Group, we calculated intra-individual brain structural covariance networks (using the bilaterally-averaged values of 33 cortical surface areas, 33 cortical thickness values, and six subcortical volumes), in which edge weights were proportional to the similarity between two brain morphological features in terms of deviation from healthy controls (i.e. z-score transformed). Global networks were characterized using measures of network segregation (clustering and modularity), network integration (global efficiency), and their balance (small-worldness), and their community membership was assessed. Hub profiling of regional networks was undertaken using measures of betweenness, closeness, and eigenvector centrality. Individually calculated network measures were integrated across the 37 datasets using a meta-analytical approach. These network measures were summated across the network density range of K = 0.10-0.25 per participant, and were integrated across the 37 datasets using a meta-analytical approach. Compared with healthy controls, at a global level, the structural covariance networks of OCD showed lower clustering (P < 0.0001), lower modularity (P < 0.0001), and lower small-worldness (P = 0.017). Detection of community membership emphasized lower network segregation in OCD compared to healthy controls. At the regional level, there were lower (rank-transformed) centrality values in OCD for volume of caudate nucleus and thalamus, and surface area of paracentral cortex, indicative of altered distribution of brain hubs. Centrality of cingulate and orbito-frontal as well as other brain areas was associated with OCD illness duration, suggesting greater involvement of these brain areas with illness chronicity. In summary, the findings of this study, the largest brain structural covariance study of OCD to date, point to a less segregated organization of structural covariance networks in OCD, and reorganization of brain hubs. The segregation findings suggest a possible signature of altered brain morphometry in OCD, while the hub findings point to OCD-related alterations in trajectories of brain development and maturation, particularly in cingulate and orbitofrontal regions

    Reducing corruption in a Mexican medical school: impact assessment across two cross-sectional surveys

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Corruption pervades educational and other institutions worldwide and medical schools are not exempt. Empirical evidence about levels and types of corruption in medical schools is sparse. We conducted surveys in 2000 and 2007 in the medical school of the Autonomous University of Guerrero in Mexico to document student perceptions and experience of corruption and to support the medical school to take actions to tackle corruption.</p> <p>Methods</p> <p>In both 2000 and 2007 medical students completed a self-administered questionnaire in the classroom without the teacher present. The questionnaire asked about unofficial payments for admission to medical school, for passing an examination and for administrative procedures. We examined factors related to the experience of corruption in multivariate analysis. Focus groups of students discussed the quantitative findings.</p> <p>Results</p> <p>In 2000, 6% of 725 responding students had paid unofficially to obtain entry into the medical school; this proportion fell to 1.6% of the 436 respondents in 2007. In 2000, 15% of students reported having paid a bribe to pass an examination, not significantly different from the 18% who reported this in 2007. In 2007, students were significantly more likely to have bribed a teacher to pass an examination if they were in the fourth year, if they had been subjected to sexual harassment or political pressure, and if they had been in the university for five years or more. Students resented the need to make unofficial payments and suggested tackling the problem by disciplining corrupt teachers. The university administration made several changes to the system of admissions and examinations in the medical school, based on the findings of the 2000 survey.</p> <p>Conclusion</p> <p>The fall in the rate of bribery to enter the medical school was probably the result of the new admissions system instituted after the first survey. Further actions will be necessary to tackle the continuing presence of bribery to pass examinations and for administrative procedures. The social audit helped to draw attention to corruption and to stimulate actions to tackle it.</p

    Vision, challenges and opportunities for a Plant Cell Atlas

    Get PDF
    With growing populations and pressing environmental problems, future economies will be increasingly plant-based. Now is the time to reimagine plant science as a critical component of fundamental science, agriculture, environmental stewardship, energy, technology and healthcare. This effort requires a conceptual and technological framework to identify and map all cell types, and to comprehensively annotate the localization and organization of molecules at cellular and tissue levels. This framework, called the Plant Cell Atlas (PCA), will be critical for understanding and engineering plant development, physiology and environmental responses. A workshop was convened to discuss the purpose and utility of such an initiative, resulting in a roadmap that acknowledges the current knowledge gaps and technical challenges, and underscores how the PCA initiative can help to overcome them.National Science Foundation 1916797 David W Ehrhardt, Kenneth D Birnbaum, Seung Yon Rhee; National Science Foundation 2052590 Seung Yon Rhe

    Creditor Rights and the Credit Market: Where Do We Stand?

    Full text link
    A recent survey has shown that the major problem faced by firms in Latin American countries is difficulty in accessing financial markets. Figure 1 summarizes the findings of the Business Environment Survey on obstacles faced by firms

    Developmental Expression of Kv Potassium Channels at the Axon Initial Segment of Cultured Hippocampal Neurons

    Get PDF
    Axonal outgrowth and the formation of the axon initial segment (AIS) are early events in the acquisition of neuronal polarity. The AIS is characterized by a high concentration of voltage-dependent sodium and potassium channels. However, the specific ion channel subunits present and their precise localization in this axonal subdomain vary both during development and among the types of neurons, probably determining their firing characteristics in response to stimulation. Here, we characterize the developmental expression of different subfamilies of voltage-gated potassium channels in the AISs of cultured mouse hippocampal neurons, including subunits Kv1.2, Kv2.2 and Kv7.2. In contrast to the early appearance of voltage-gated sodium channels and the Kv7.2 subunit at the AIS, Kv1.2 and Kv2.2 subunits were tethered at the AIS only after 10 days in vitro. Interestingly, we observed different patterns of Kv1.2 and Kv2.2 subunit expression, with each confined to distinct neuronal populations. The accumulation of Kv1.2 and Kv2.2 subunits at the AIS was dependent on ankyrin G tethering, it was not affected by disruption of the actin cytoskeleton and it was resistant to detergent extraction, as described previously for other AIS proteins. This distribution of potassium channels in the AIS further emphasizes the heterogeneity of this structure in different neuronal populations, as proposed previously, and suggests corresponding differences in action potential regulation

    Cerebrospinal Fluid Space Alterations in Melancholic Depression

    Get PDF
    Melancholic depression is a biologically homogeneous clinical entity in which structural brain alterations have been described. Interestingly, reports of structural alterations in melancholia include volume increases in Cerebro-Spinal Fluid (CSF) spaces. However, there are no previous reports of CSF volume alterations using automated whole-brain voxel-wise approaches, as tissue classification algorithms have been traditionally regarded as less reliable for CSF segmentation. Here we aimed to assess CSF volumetric alterations in melancholic depression and their clinical correlates by means of a novel segmentation algorithm (‘new segment’, as implemented in the software Statistical Parametric Mapping-SPM8), incorporating specific features that may improve CSF segmentation. A three-dimensional Magnetic Resonance Image (MRI) was obtained from seventy patients with melancholic depression and forty healthy control subjects. Although imaging data were pre-processed with the ‘new segment’ algorithm, in order to obtain a comparison with previous segmentation approaches, tissue segmentation was also performed with the ‘unified segmentation’ approach. Melancholic patients showed a CSF volume increase in the region of the left Sylvian fissure, and a CSF volume decrease in the subarachnoid spaces surrounding medial and lateral parietal cortices. Furthermore, CSF increases in the left Sylvian fissure were negatively correlated with the reduction percentage of depressive symptoms at discharge. None of these results were replicated with the ‘unified segmentation’ approach. By contrast, between-group differences in the left Sylvian fissure were replicated with a non-automated quantification of the CSF content of this region. Left Sylvian fissure alterations reported here are in agreement with previous findings from non-automated CSF assessments, and also with other reports of gray and white matter insular alterations in depressive samples using automated approaches. The reliable characterization of CSF alterations may help in the comprehensive characterization of brain structural abnormalities in psychiatric samples and in the development of etiopathogenic hypotheses relating to the disorders

    Brain structural covariance networks in obsessive-compulsive disorder : a graph analysis from the ENIGMA Consortium

    Get PDF
    In the largest brain structural covariance study of OCD to date, Yun et al. show a less segregated organization of structural covariance networks and a reorganization of brain hubs, including cingulate and orbitofrontal regions, in OCD. The findings point to altered trajectories of brain development and maturation. Brain structural covariance networks reflect covariation in morphology of different brain areas and are thought to reflect common trajectories in brain development and maturation. Large-scale investigation of structural covariance networks in obsessive-compulsive disorder (OCD) may provide clues to the pathophysiology of this neurodevelopmental disorder. Using T-weighted MRI scans acquired from 1616 individuals with OCD and 1463 healthy controls across 37 datasets participating in the ENIGMA-OCD Working Group, we calculated intra-individual brain structural covariance networks (using the bilaterally-averaged values of 33 cortical surface areas, 33 cortical thickness values, and six subcortical volumes), in which edge weights were proportional to the similarity between two brain morphological features in terms of deviation from healthy controls (i.e. z -score transformed). Global networks were characterized using measures of network segregation (clustering and modularity), network integration (global efficiency), and their balance (small-worldness), and their community membership was assessed. Hub profiling of regional networks was undertaken using measures of betweenness, closeness, and eigenvector centrality. Individually calculated network measures were integrated across the 37 datasets using a meta-analytical approach. These network measures were summated across the network density range of K = 0.10-0.25 per participant, and were integrated across the 37 datasets using a meta-analytical approach. Compared with healthy controls, at a global level, the structural covariance networks of OCD showed lower clustering (P < 0.0001), lower modularity (P < 0.0001), and lower small-worldness (P = 0.017). Detection of community membership emphasized lower network segregation in OCD compared to healthy controls. At the regional level, there were lower (rank-transformed) centrality values in OCD for volume of caudate nucleus and thalamus, and surface area of paracentral cortex, indicative of altered distribution of brain hubs. Centrality of cingulate and orbito-frontal as well as other brain areas was associated with OCD illness duration, suggesting greater involvement of these brain areas with illness chronicity. In summary, the findings of this study, the largest brain structural covariance study of OCD to date, point to a less segregated organization of structural covariance networks in OCD, and reorganization of brain hubs. The segregation findings suggest a possible signature of altered brain morphometry in OCD, while the hub findings point to OCD-related alterations in trajectories of brain development and maturation, particularly in cingulate and orbitofrontal regions
    corecore