122 research outputs found
Learning Agile, Vision-Based Drone Flight: From Simulation to Reality
We present our latest research in learning deep sensorimotor policies for agile, vision-based quadrotor flight. We show methodologies for the successful transfer of such policies from simulation to the real world. In addition, we discuss the open research questions that still need to be answered to improve the agility and robustness of autonomous drones toward human-pilot performance
Learning Agile, Vision-based Drone Flight: from Simulation to Reality
We present our latest research in learning deep sensorimotor policies for
agile, vision-based quadrotor flight. We show methodologies for the successful
transfer of such policies from simulation to the real world. In addition, we
discuss the open research questions that still need to be answered to improve
the agility and robustness of autonomous drones toward human-pilot performance
Deep Drone Racing: From Simulation to Reality with Domain Randomization
Dynamically changing environments, unreliable state estimation, and operation
under severe resource constraints are fundamental challenges that limit the
deployment of small autonomous drones. We address these challenges in the
context of autonomous, vision-based drone racing in dynamic environments. A
racing drone must traverse a track with possibly moving gates at high speed. We
enable this functionality by combining the performance of a state-of-the-art
planning and control system with the perceptual awareness of a convolutional
neural network (CNN). The resulting modular system is both platform- and
domain-independent: it is trained in simulation and deployed on a physical
quadrotor without any fine-tuning. The abundance of simulated data, generated
via domain randomization, makes our system robust to changes of illumination
and gate appearance. To the best of our knowledge, our approach is the first to
demonstrate zero-shot sim-to-real transfer on the task of agile drone flight.
We extensively test the precision and robustness of our system, both in
simulation and on a physical platform, and show significant improvements over
the state of the art.Comment: Accepted as a Regular Paper to the IEEE Transactions on Robotics
Journal. arXiv admin note: substantial text overlap with arXiv:1806.0854
User-Conditioned Neural Control Policies for Mobile Robotics
Recently, learning-based controllers have been shown to push mobile robotic systems to their limits and provide the robustness needed for many real-world applications. However, only classical optimization-based control frameworks offer the inherent flexibility to be dynamically adjusted during execution by, for example, setting target speeds or actuator limits. We present a framework to overcome this shortcoming of neural controllers by conditioning them on an auxiliary input. This advance is enabled by including a feature-wise linear modulation layer (FiLM). We use model-free reinforcement-learning to train quadrotor control policies for the task of navigating through a sequence of waypoints in minimum time. By conditioning the policy on the maximum available thrust or the viewing direction relative to the next waypoint, a user can regulate the aggressiveness of the quadrotor's flight during deployment. We demonstrate in simulation and in real-world experiments that a single control policy can achieve close to time-optimal flight performance across the entire performance envelope of the robot, reaching up to 60 km/h and 4.5 g in acceleration. The ability to guide a learned controller during task execution has implications beyond agile quadrotor flight, as conditioning the control policy on human intent helps safely bringing learning based systems out of the well-defined laboratory environment into the wild
AlphaPilot: Autonomous Drone Racing
This paper presents a novel system for autonomous, vision-based drone racing
combining learned data abstraction, nonlinear filtering, and time-optimal
trajectory planning. The system has successfully been deployed at the first
autonomous drone racing world championship: the 2019 AlphaPilot Challenge.
Contrary to traditional drone racing systems, which only detect the next gate,
our approach makes use of any visible gate and takes advantage of multiple,
simultaneous gate detections to compensate for drift in the state estimate and
build a global map of the gates. The global map and drift-compensated state
estimate allow the drone to navigate through the race course even when the
gates are not immediately visible and further enable to plan a near
time-optimal path through the race course in real time based on approximate
drone dynamics. The proposed system has been demonstrated to successfully guide
the drone through tight race courses reaching speeds up to 8m/s and ranked
second at the 2019 AlphaPilot Challenge.Comment: Accepted at Robotics: Science and Systems 2020, associated video at
https://youtu.be/DGjwm5PZQT
Beauty and the Beast: Optimal Methods Meet Learning for Drone Racing
Autonomous micro aerial vehicles still struggle with fast and agile
maneuvers, dynamic environments, imperfect sensing, and state estimation drift.
Autonomous drone racing brings these challenges to the fore. Human pilots can
fly a previously unseen track after a handful of practice runs. In contrast,
state-of-the-art autonomous navigation algorithms require either a precise
metric map of the environment or a large amount of training data collected in
the track of interest. To bridge this gap, we propose an approach that can fly
a new track in a previously unseen environment without a precise map or
expensive data collection. Our approach represents the global track layout with
coarse gate locations, which can be easily estimated from a single
demonstration flight. At test time, a convolutional network predicts the poses
of the closest gates along with their uncertainty. These predictions are
incorporated by an extended Kalman filter to maintain optimal
maximum-a-posteriori estimates of gate locations. This allows the framework to
cope with misleading high-variance estimates that could stem from poor
observability or lack of visible gates. Given the estimated gate poses, we use
model predictive control to quickly and accurately navigate through the track.
We conduct extensive experiments in the physical world, demonstrating agile and
robust flight through complex and diverse previously-unseen race tracks. The
presented approach was used to win the IROS 2018 Autonomous Drone Race
Competition, outracing the second-placing team by a factor of two.Comment: 6 pages (+1 references
Autonomous Drone Racing with Deep Reinforcement Learning
In many robotic tasks, such as drone racing, the goal is to travel through a
set of waypoints as fast as possible. A key challenge for this task is planning
the minimum-time trajectory, which is typically solved by assuming perfect
knowledge of the waypoints to pass in advance. The resulting solutions are
either highly specialized for a single-track layout, or suboptimal due to
simplifying assumptions about the platform dynamics. In this work, a new
approach to minimum-time trajectory generation for quadrotors is presented.
Leveraging deep reinforcement learning and relative gate observations, this
approach can adaptively compute near-time-optimal trajectories for random track
layouts. Our method exhibits a significant computational advantage over
approaches based on trajectory optimization for non-trivial track
configurations. The proposed approach is evaluated on a set of race tracks in
simulation and the real world, achieving speeds of up to 17 m/s with a physical
quadrotor
Learned Inertial Odometry for Autonomous Drone Racing
Inertial odometry is an attractive solution to the problem of state estimation for agile quadrotor flight. It is inexpensive, lightweight, and it is not affected by perceptual degradation. However, only relying on the integration of the inertial measurements for state estimation is infeasible. The errors and time-varying biases present in such measurements cause the accumulation of large drift in the pose estimates. Recently, inertial odometry has made significant progress in estimating the motion of pedestrians. State-of-the-art algorithms rely on learning a motion prior that is typical of humans but cannot be transferred to drones. In this work, we propose a learning-based odometry algorithm that uses an inertial measurement unit (IMU) as the only sensor modality for autonomous drone racing tasks. The core idea of our system is to couple a model-based filter, driven by the inertial measurements, with a learning-based module that has access to the thrust measurements. We show that our inertial odometry algorithm is superior to the state-of-the-art filter-based and optimization-based visual-inertial odometry as well as the state-of-the-art learned-inertial odometry in estimating the pose of an autonomous racing drone. Additionally, we show that our system is comparable to a visual-inertial odometry solution that uses a camera and exploits the known gate location and appearance. We believe that the application in autonomous drone racing paves the way for novel research in inertial odometry for agile quadrotor flight
Learned Inertial Odometry for Autonomous Drone Racing
Inertial odometry is an attractive solution to the problem of state
estimation for agile quadrotor flight. It is inexpensive, lightweight, and it
is not affected by perceptual degradation. However, only relying on the
integration of the inertial measurements for state estimation is infeasible.
The errors and time-varying biases present in such measurements cause the
accumulation of large drift in the pose estimates. Recently, inertial odometry
has made significant progress in estimating the motion of pedestrians.
State-of-the-art algorithms rely on learning a motion prior that is typical of
humans but cannot be transferred to drones. In this work, we propose a
learning-based odometry algorithm that uses an inertial measurement unit (IMU)
as the only sensor modality for autonomous drone racing tasks. The core idea of
our system is to couple a model-based filter, driven by the inertial
measurements, with a learning-based module that has access to the control
commands. We show that our inertial odometry algorithm is superior to the
state-of-the-art filter-based and optimization-based visual- inertial odometry
as well as the state-of-the-art learned-inertial odometry. Additionally, we
show that our system is comparable to a visual-inertial odometry solution that
uses a camera and exploits the known gate location and appearance. We believe
that the application in autonomous drone racing paves the way for novel
research in inertial odometry for agile quadrotor flight. We will release the
code upon acceptance
- …