1 research outputs found
Teleportation, Braid Group and Temperley--Lieb Algebra
We explore algebraic and topological structures underlying the quantum
teleportation phenomena by applying the braid group and Temperley--Lieb
algebra. We realize the braid teleportation configuration, teleportation
swapping and virtual braid representation in the standard description of the
teleportation. We devise diagrammatic rules for quantum circuits involving
maximally entangled states and apply them to three sorts of descriptions of the
teleportation: the transfer operator, quantum measurements and characteristic
equations, and further propose the Temperley--Lieb algebra under local unitary
transformations to be a mathematical structure underlying the teleportation. We
compare our diagrammatical approach with two known recipes to the quantum
information flow: the teleportation topology and strongly compact closed
category, in order to explain our diagrammatic rules to be a natural
diagrammatic language for the teleportation.Comment: 33 pages, 19 figures, latex. The present article is a short version
of the preprint, quant-ph/0601050, which includes details of calculation,
more topics such as topological diagrammatical operations and entanglement
swapping, and calls the Temperley--Lieb category for the collection of all
the Temperley--Lieb algebra with physical operations like local unitary
transformation