4,633 research outputs found

    Measuring Complexity in an Aquatic Ecosystem

    Full text link
    We apply formal measures of emergence, self-organization, homeostasis, autopoiesis and complexity to an aquatic ecosystem; in particular to the physiochemical component of an Arctic lake. These measures are based on information theory. Variables with an homogeneous distribution have higher values of emergence, while variables with a more heterogeneous distribution have a higher self-organization. Variables with a high complexity reflect a balance between change (emergence) and regularity/order (self-organization). In addition, homeostasis values coincide with the variation of the winter and summer seasons. Autopoiesis values show a higher degree of independence of biological components over their environment. Our approach shows how the ecological dynamics can be described in terms of information.Comment: 6 pages, to be published in Proceedings of the CCBCOL 2013, 2nd Colombian Computational Biology Congress, Springe

    Quantum entanglement, unitary braid representation and Temperley-Lieb algebra

    Get PDF
    Important developments in fault-tolerant quantum computation using the braiding of anyons have placed the theory of braid groups at the very foundation of topological quantum computing. Furthermore, the realization by Kauffman and Lomonaco that a specific braiding operator from the solution of the Yang-Baxter equation, namely the Bell matrix, is universal implies that in principle all quantum gates can be constructed from braiding operators together with single qubit gates. In this paper we present a new class of braiding operators from the Temperley-Lieb algebra that generalizes the Bell matrix to multi-qubit systems, thus unifying the Hadamard and Bell matrices within the same framework. Unlike previous braiding operators, these new operators generate {\it directly}, from separable basis states, important entangled states such as the generalized Greenberger-Horne-Zeilinger states, cluster-like states, and other states with varying degrees of entanglement.Comment: 5 pages, no figur

    Maximum Power Efficiency and Criticality in Random Boolean Networks

    Full text link
    Random Boolean networks are models of disordered causal systems that can occur in cells and the biosphere. These are open thermodynamic systems exhibiting a flow of energy that is dissipated at a finite rate. Life does work to acquire more energy, then uses the available energy it has gained to perform more work. It is plausible that natural selection has optimized many biological systems for power efficiency: useful power generated per unit fuel. In this letter we begin to investigate these questions for random Boolean networks using Landauer's erasure principle, which defines a minimum entropy cost for bit erasure. We show that critical Boolean networks maximize available power efficiency, which requires that the system have a finite displacement from equilibrium. Our initial results may extend to more realistic models for cells and ecosystems.Comment: 4 pages RevTeX, 1 figure in .eps format. Comments welcome, v2: minor clarifications added, conclusions unchanged. v3: paper rewritten to clarify it; conclusions unchange

    Self-organized Networks of Competing Boolean Agents

    Full text link
    A model of Boolean agents competing in a market is presented where each agent bases his action on information obtained from a small group of other agents. The agents play a competitive game that rewards those in the minority. After a long time interval, the poorest player's strategy is changed randomly, and the process is repeated. Eventually the network evolves to a stationary but intermittent state where random mutation of the worst strategy can change the behavior of the entire network, often causing a switch in the dynamics between attractors of vastly different lengths.Comment: 4 pages, 3 included figures. Some text revision and one new figure added. To appear in PR

    Canalization and Symmetry in Boolean Models for Genetic Regulatory Networks

    Full text link
    Canalization of genetic regulatory networks has been argued to be favored by evolutionary processes due to the stability that it can confer to phenotype expression. We explore whether a significant amount of canalization and partial canalization can arise in purely random networks in the absence of evolutionary pressures. We use a mapping of the Boolean functions in the Kauffman N-K model for genetic regulatory networks onto a k-dimensional Ising hypercube to show that the functions can be divided into different classes strictly due to geometrical constraints. The classes can be counted and their properties determined using results from group theory and isomer chemistry. We demonstrate that partially canalized functions completely dominate all possible Boolean functions, particularly for higher k. This indicates that partial canalization is extremely common, even in randomly chosen networks, and has implications for how much information can be obtained in experiments on native state genetic regulatory networks.Comment: 14 pages, 4 figures; version to appear in J. Phys.

    Landscape statistics of the p-spin Ising model

    Full text link
    The statistical properties of the local optima (metastable states) of the infinite range Ising spin glass with p-spin interactions in the presence of an external magnetic field h are investigated analytically. The average number of optima as well as the typical overlap between pairs of identical optima are calculated for general p. Similarly to the thermodynamic order parameter, for p>2 and small h the typical overlap q_t is a discontinuous function of the energy. The size of the jump in q_t increases with p and decreases with h, vanishing at finite values of the magnetic field.Comment: 12 pages,te

    Evolutionary dynamics on strongly correlated fitness landscapes

    Full text link
    We study the evolutionary dynamics of a maladapted population of self-replicating sequences on strongly correlated fitness landscapes. Each sequence is assumed to be composed of blocks of equal length and its fitness is given by a linear combination of four independent block fitnesses. A mutation affects the fitness contribution of a single block leaving the other blocks unchanged and hence inducing correlations between the parent and mutant fitness. On such strongly correlated fitness landscapes, we calculate the dynamical properties like the number of jumps in the most populated sequence and the temporal distribution of the last jump which is shown to exhibit a inverse square dependence as in evolution on uncorrelated fitness landscapes. We also obtain exact results for the distribution of records and extremes for correlated random variables

    Experimental approximation of the Jones polynomial with DQC1

    Full text link
    We present experimental results approximating the Jones polynomial using 4 qubits in a liquid state nuclear magnetic resonance quantum information processor. This is the first experimental implementation of a complete problem for the deterministic quantum computation with one quantum bit model of quantum computation, which uses a single qubit accompanied by a register of completely random states. The Jones polynomial is a knot invariant that is important not only to knot theory, but also to statistical mechanics and quantum field theory. The implemented algorithm is a modification of the algorithm developed by Shor and Jordan suitable for implementation in NMR. These experimental results show that for the restricted case of knots whose braid representations have four strands and exactly three crossings, identifying distinct knots is possible 91% of the time.Comment: 5 figures. Version 2 changes: published version, minor errors corrected, slight changes to improve readabilit

    The Asymptotic Number of Attractors in the Random Map Model

    Get PDF
    The random map model is a deterministic dynamical system in a finite phase space with n points. The map that establishes the dynamics of the system is constructed by randomly choosing, for every point, another one as being its image. We derive here explicit formulas for the statistical distribution of the number of attractors in the system. As in related results, the number of operations involved by our formulas increases exponentially with n; therefore, they are not directly applicable to study the behavior of systems where n is large. However, our formulas lend themselves to derive useful asymptotic expressions, as we show.Comment: 16 pages, 1 figure. Minor changes. To be published in Journal of Physics A: Mathematical and Genera

    Noise, Synchrony and Correlations at the Edge of Chaos

    Full text link
    We study the effect of a weak random additive noise in a linear chain of N locally-coupled logistic maps at the edge of chaos. Maps tend to synchronize for a strong enough coupling, but if a weak noise is added, very intermittent fluctuations in the returns time series are observed. This intermittency tends to disappear when noise is increased. Considering the pdfs of the returns, we observe the emergence of fat tails which can be satisfactorily reproduced by qq-Gaussians curves typical of nonextensive statistical mechanics. Interoccurrence times of these extreme events are also studied in detail. Similarities with recent analysis of financial data are also discussed.Comment: 6 pages, 8 figures, new figure added - Version accepted for publication in Physical Review
    corecore