3 research outputs found

    Energy gap of the bimodal two-dimensional Ising spin glass

    Full text link
    An exact algorithm is used to compute the degeneracies of the excited states of the bimodal Ising spin glass in two dimensions. It is found that the specific heat at arbitrary low temperature is not a self-averaging quantity and has a distribution that is neither normal or lognormal. Nevertheless, it is possible to estimate the most likely value and this is found to scale as L^3 T^(-2) exp(-4J/kT), for a L*L lattice. Our analysis also explains, for the first time, why a correlation length \xi ~ exp(2J/kT) is consistent with an energy gap of 2J. Our method allows us to obtain results for up to 10^5 disorder realizations with L <= 64. Distributions of second and third excitations are also shown.Comment: 4 pages, 4 figure

    Chirality scenario of the spin-glass ordering

    Full text link
    Detailed account is given of the chirality scenario of experimental spin-glass transitions. In this scenario, the spin glass order of weakly anisotropic Heisenberg-like spin-glass magnets including canonical spin glasses are essentially chirality driven. Recent numerical and experimental results are discussed in conjunction with this scenario.Comment: Submitted to J. Phys. Soc. Japan "Special Issue on Frustration
    corecore