145 research outputs found
MMTV-PyMT and derived Met-1 mouse mammary tumor cells as models for studying the role of the androgen receptor in triple-negative breast cancer progression
Triple-negative breast cancer (TNBC) has a faster rate of metastasis compared to other breast cancer subtypes and no effective targeted therapies are currently FDA-approved. Recent data indicate that the androgen receptor (AR) promotes tumor survival and may serve as a potential therapeutic target in TNBC. Studies of AR in disease progression and the systemic effects of anti-androgens have been hindered by the lack of an AR-positive (AR+) immunocompetent preclinical model. In this study we identified the transgenic MMTV-PyMT (mouse mammary tumor virus-polyoma middle tumor antigen) mouse mammary gland carcinoma model of breast cancer and Met-1 cells derived from this model as tools to study the role of AR in breast cancer progression. AR protein expression was examined in late-stage primary tumors and lung metastases from MMTV-PyMT mice as well as in Met-1 cells by immunohistochemistry (IHC). Sensitivity of Met-1 cells to the AR agonist dihydrotestosterone (DHT) and anti-androgen therapy was examined using cell viability, migration/invasion, and anchorage-independent growth assays. Late-stage primary tumors and lung metastases from MMTV-PyMT mice and Met-1 cells expressed abundant nuclear AR protein, while negative for estrogen and progesterone receptors. Met-1 sensitivity to DHT and AR antagonists demonstrated a reliance on AR for survival, and AR antagonists inhibited invasion and anchorage-independent growth. These data suggest that the MMTV-PyMT model and Met-1 cells may serve as valuable tools for mechanistic studies of the role of AR in disease progression and how anti-androgens affect the tumor microenvironment
Endogenous DOPA inhibits melanoma through suppression of CHRM1 signaling
Melanoma risk is 30 times higher in people with lightly pigmented skin versus darkly pigmented skin. Using primary human melanocytes representing the full human skin pigment continuum and preclinical melanoma models, we show that cell-intrinsic differences between dark and light melanocytes regulate melanocyte proliferative capacity and susceptibility to malignant transformation, independent of melanin and ultraviolet exposure. These differences result from dihydroxyphenylalanine (DOPA), a melanin precursor synthesized at higher levels in melanocytes from darkly pigmented skin. We used both high-throughput pharmacologic and genetic in vivo CRISPR screens to determine that DOPA limits melanocyte and melanoma cell proliferation by inhibiting the muscarinic acetylcholine receptor M1 (CHRM1) signaling. Pharmacologic CHRM1 antagonism in melanoma leads to depletion of c-Myc and FOXM1, both of which are proliferation drivers associated with aggressive melanoma. In preclinical mouse melanoma models, pharmacologic inhibition of CHRM1 or FOXM1 inhibited tumor growth. CHRM1 and FOXM1 may be new therapeutic targets for melanoma
Reprogramming of endothelial gene expression by tamoxifen inhibits angiogenesis and ERα-negative tumor growth.
peer reviewedRationale: 17β-estradiol (E2) can directly promote the growth of ERα-negative cancer cells through activation of endothelial ERα in the tumor microenvironment, thereby increasing a normalized tumor angiogenesis. ERα acts as a transcription factor through its nuclear transcriptional AF-1 and AF-2 transactivation functions, but membrane ERα plays also an important role in endothelium. The present study aims to decipher the respective roles of these two pathways in ERα-negative tumor growth. Moreover, we delineate the actions of tamoxifen, a Selective Estrogen Receptor Modulator (SERM) in ERα-negative tumors growth and angiogenesis, since we recently demonstrated that tamoxifen impacts vasculature functions through complex modulation of ERα activity. Methods: ERα-negative B16K1 cancer cells were grafted into immunocompetent mice mutated for ERα-subfunctions and tumor growths were analyzed in these different models in response to E2 and/or tamoxifen treatment. Furthermore, RNA sequencings were analyzed in endothelial cells in response to these different treatments and validated by RT-qPCR and western blot. Results: We demonstrate that both nuclear and membrane ERα actions are required for the pro-tumoral effects of E2, while tamoxifen totally abrogates the E2-induced in vivo tumor growth, through inhibition of angiogenesis but promotion of vessel normalization. RNA sequencing indicates that tamoxifen inhibits the E2-induced genes, but also initiates a specific transcriptional program that especially regulates angiogenic genes and differentially regulates glycolysis, oxidative phosphorylation and inflammatory responses in endothelial cells. Conclusion: These findings provide evidence that tamoxifen specifically inhibits angiogenesis through a reprogramming of endothelial gene expression via regulation of some transcription factors, that could open new promising strategies to manage cancer therapies affecting the tumor microenvironment of ERα-negative tumors
Whole-Genome Cartography of Estrogen Receptor α Binding Sites
Using a chromatin immunoprecipitation-paired end diTag cloning and sequencing strategy, we mapped estrogen receptor α (ERα) binding sites in MCF-7 breast cancer cells. We identified 1,234 high confidence binding clusters of which 94% are projected to be bona fide ERα binding regions. Only 5% of the mapped estrogen receptor binding sites are located within 5 kb upstream of the transcriptional start sites of adjacent genes, regions containing the proximal promoters, whereas vast majority of the sites are mapped to intronic or distal locations (>5 kb from 5′ and 3′ ends of adjacent transcript), suggesting transcriptional regulatory mechanisms over significant physical distances. Of all the identified sites, 71% harbored putative full estrogen response elements (EREs), 25% bore ERE half sites, and only 4% had no recognizable ERE sequences. Genes in the vicinity of ERα binding sites were enriched for regulation by estradiol in MCF-7 cells, and their expression profiles in patient samples segregate ERα-positive from ERα-negative breast tumors. The expression dynamics of the genes adjacent to ERα binding sites suggest a direct induction of gene expression through binding to ERE-like sequences, whereas transcriptional repression by ERα appears to be through indirect mechanisms. Our analysis also indicates a number of candidate transcription factor binding sites adjacent to occupied EREs at frequencies much greater than by chance, including the previously reported FOXA1 sites, and demonstrate the potential involvement of one such putative adjacent factor, Sp1, in the global regulation of ERα target genes. Unexpectedly, we found that only 22%–24% of the bona fide human ERα binding sites were overlapping conserved regions in whole genome vertebrate alignments, which suggest limited conservation of functional binding sites. Taken together, this genome-scale analysis suggests complex but definable rules governing ERα binding and gene regulation
DNA Shuffling Method for Generating Estrogen Receptor α and β Chimeras in Yeast
To facilitate our study of the molecular basis for the estrogen receptor (ER) subtype selectivity of novel ligands, we used DNA shuffling to construct chimeric ERs having ligand binding domains derived from both ERα and ERβ. The efficiency of chimera generation was low with traditional DNA shuffling protocols. Furthermore, ER ligand binding domain sequences lack convenient restriction sites for introducing chimeric ligand binding domain sequences into expression vectors. To overcome these problems, we developed a modified strategy whereby chimeric sequences were exclusively amplified from among the reassembled products from DNA shuffling using a special pair of PCR primers whose 3′ ends specifically match the α and β sequences, respectively, and whose 5′ ends match sequences outside the ERβ ligand binding domain. When chimeric ligand binding domain DNA sequences, amplified with these primers, were co-transformed into a yeast strain with a linearized expression vector for ERβ, an active expression vector was produced by homologous recombination. Twenty-two different crossover sites were found; most occurred when there was a stretch of eight or more identical base pairs in both sequences, and many were concentrated in the regions important for studying ligand binding and transactivation. This method should prove to be useful for generating chimeric gene products from parent templates that share relatively low sequence identity
- …