14 research outputs found

    Combination of the STING Agonist MIW815 (ADU-S100) and PD-1 Inhibitor Spartalizumab in Advanced/Metastatic Solid Tumors or Lymphomas: An Open-Label, Multicenter, Phase Ib Study

    Full text link
    Purpose: The stimulator of IFN genes (STING) is a transmembrane protein that plays a role in the immune response to tumors. Single-agent STING agonist MIW815 (ADU-S100) has demonstrated immune activation but limited antitumor activity. This phase Ib, multicenter, dose-escalation study assessed the safety and tolerability of MIW815 plus spartalizumab (PDR001), a humanized IgG4 antibody against PD-1, in 106 patients with advanced solid tumors or lymphomas. Patients and Methods: Patients were treated with weekly intratumoral injections of MIW815 (50–3,200 μg) on a 3-weeks-on/1-week-off schedule or once every 4 weeks, plus a fixed dose of spartalizumab (400 mg) intravenously every 4 weeks. Results: Common adverse events were pyrexia (n = 23; 22%), injection site pain (n = 21; 20%), and diarrhea (n = 12; 11%). Overall response rate was 10.4%. The MTD was not reached. Pharmacodynamic biomarker analysis demonstrated on-target activity. Conclusions: The combination of MIW815 and spartalizumab was well tolerated in patients with advanced/metastatic cancers, including in patients with anti-PD-1 refractory disease. Minimal antitumor responses were seen

    A Deubiquitinating Activity Is Conserved in the Large Tegument Protein of the Herpesviridae

    No full text
    The largest tegument protein of herpes simplex virus 1 (HSV-1), UL36, contains a novel deubiquitinating activity embedded in it. All members of the Herpesviridae contain a homologue of HSV-1 UL36, the N-terminal segments of which show perfect conservation of those residues implicated in catalysis. For murine cytomegalovirus and Epstein-Barr virus, chosen as representatives of the beta- and gammaherpesvirus subfamilies, respectively, we here show that the homologous modules indeed display deubiquitinating activity in vitro. The conservation of this activity throughout all subfamilies is indicative of an important, if not essential, function

    High-Molecular-Weight Protein (pUL48) of Human Cytomegalovirus Is a Competent Deubiquitinating Protease: Mutant Viruses Altered in Its Active-Site Cysteine or Histidine Are Viable

    No full text
    We show here that the high-molecular-weight protein (HMWP or pUL48; 253 kDa) of human cytomegalovirus (HCMV) is a functionally competent deubiquitinating protease (DUB). By using a suicide substrate probe specific for ubiquitin-binding cysteine proteases (DUB probe) to screen lysates of HCMV-infected cells, we found just one infected-cell-specific DUB. Characteristics of this protein, including its large size, expression at late times of infection, presence in extracellular virus particles, and reactivity with an antiserum to the HMWP, identified it as the HMWP. This was confirmed by constructing mutant viruses with substitutions in two of the putative active-site residues, Cys24Ile and His162Ala. HMWP with these mutations either failed to bind the DUB probe (C24I) or had significantly reduced reactivity with it (H162A). More compellingly, the deubiquitinating activity detected in wild-type virus particles was completely abolished in both the C24I and H162A mutants, thereby directly linking HMWP with deubiquitinating enzyme activity. Mutations in these active-site residues were not lethal to virus replication but slowed production of infectious virus relative to wild type and mutations of other conserved residues. Initial studies, by electron microscopy, of cells infected with the mutants revealed no obvious differences at late times of replication in the general appearance of the cells or in the distribution, relative numbers, or appearance of virus particles in the cytoplasm or nucleus

    A Gammaherpesvirus Ubiquitin-Specific Protease Is Involved in the Establishment of Murine Gammaherpesvirus 68 Infection â–¿

    No full text
    Murine gammaherpesvirus 68 (MHV-68) contains a ubiquitin (Ub)-specific cysteine protease (USP) domain embedded within the large tegument protein ORF64, as do all other herpesviruses. The biological role of this protease is still unclear, but for the alphaherpesvirus Marek's disease virus, its USP is involved in T-cell lymphoma formation. We here study the role of the MHV-68 USP, encoded by ORF64. By constructing a mutant virus with a single cysteine-to-alanine replacement in the active site of ORF64, we demonstrate that the USP activity of ORF64 is abolished. The mutant virus replicates less efficiently in vitro, and plaque size is reduced compared to that of a revertant virus. Electron microscopy of infected cells did not reveal any obvious differences in virion morphogenesis or differences in egress for the mutant and revertant viruses. Intraperitoneal infection of C57/BL6 mice demonstrates that the mutant virus is generally cleared by day 7, indicating a role for the USP in the persistence of MHV-68 infection or efficient replication. However, the USP activity in MHV-68 is unlikely to be involved in the establishment of latency or reactivation, since we observed no significant difference in viral DNA genome copy number in the spleen or in the number of cells that reactivate MHV-68 from latency. Our results for MHV-68 ORF64 are consistent with an enzymatic function of the tegument protein that is beneficial to the virus during acute infection, particularly in vivo

    Identification of Proteins Associated with Murine Cytomegalovirus Virions

    No full text
    Proteins associated with the murine cytomegalovirus (MCMV) viral particle were identified by a combined approach of proteomic and genomic methods. Purified MCMV virions were dissociated by complete denaturation and subjected to either separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and in-gel digestion or treated directly by in-solution tryptic digestion. Peptides were separated by nanoflow liquid chromatography and analyzed by tandem mass spectrometry (LC-MS/MS). The MS/MS spectra obtained were searched against a database of MCMV open reading frames (ORFs) predicted to be protein coding by an MCMV-specific version of the gene prediction algorithm GeneMarkS. We identified 38 proteins from the capsid, tegument, glycoprotein, replication, and immunomodulatory protein families, as well as 20 genes of unknown function. Observed irregularities in coding potential suggested possible sequence errors in the 3′-proximal ends of m20 and M31. These errors were experimentally confirmed by sequencing analysis. The MS data further indicated the presence of peptides derived from the unannotated ORFs ORF(c225441-226898) (m166.5) and ORF(105932-106072). Immunoblot experiments confirmed expression of m166.5 during viral infection

    Impact of intravenous infusion time on AAV8 vector pharmacokinetics, safety, and liver transduction in cynomolgus macaques

    No full text
    Systemically delivered adeno-associated viral (AAV) vectors are now in early-phase clinical trials for a variety of diseases. While there is a general consensus on inclusion and exclusion criteria for each of these trials, the conditions under which vectors are infused vary significantly. In this study, we evaluated the impact of intravenous infusion rate of AAV8 vector in cynomolgus macaques on transgene expression, vector clearance from the circulation, and potential activation of the innate immune system. The dose of AAV8 vector in terms of genome copies per kilogram body weight and its concentration were fixed, while the rate of infusion varied to deliver the entire dose over different time periods, including 1, 10, or 90 minutes. Analyses during the in-life phase of the experiment included sequential evaluation of whole blood for vector genomes and appearance of proinflammatory cytokines. Liver tissues were analyzed at the time of necropsy for enhanced green fluorescent protein (eGFP) expression and vector genomes. The data were remarkable with a relative absence of any statistically significant effect of infusion time on vector transduction, safety, and clearance. However, some interesting and unexpected trends did emerge

    Meeting report: Spontaneous Lesions and Diseases in Wild, Captive-Bred, and Zoo-Housed Nonhuman Primates and in Nonhuman Primate Species Used for Drug Safety Studies

    No full text
    The combination of loss of habitat, human population encroachment, and increased demand of select species for biomedical research has expanded the list of emerging diseases. There remains a need for knowledge and expertise in understanding background findings as related to the age, source, strain, and disease status of nonhuman primates. In particular, for safety/biomedical studies, a broader understanding and documentation of lesions would help clarify background from treatment related findings. A workshop and mini-symposium on spontaneous lesions and diseases in nonhuman primates were sponsored by the concurrent Annual Meetings of the American College of Veterinary Pathologists and the American Society for Veterinary Clinical Pathology held December 3-4, 2011 in Nashville, TN. The first session had presentations from Drs. Linda Lowenstine and Richard Montali, pathologists with extensive experience in wild and zoo populations of nonhuman primates, which was followed by presentations of 20 unique case studies of rare or newly observed spontaneous lesions in nonhuman primate species. The mini-symposium concentrated on background and spontaneous lesions in nonhuman primate species used for drug safety studies, and included presentations on incidence and range of spontaneous findings in cynomolgus macaques; lesions in the urogenital system of macaques; gastrointestinal lesions and pathogens in macaques and marmosets; age-associated lesions in rhesus macaques; and effects of Plasmodium infection on drug development. Both sessions were heavily attended by meeting participants that included students, pathology trainees, and experienced pathologists from academia and industry with an interest in spontaneous diseases of nonhuman primates
    corecore