3 research outputs found
Awa (Tokushima) lactate-fermented tea as well as green tea enhance the effect of diet restriction on obesity in rats
Drinking tea is recommended for promoting health due to its bioactive nutrients, such as catechins and caffeine. In Tokushima area, we have a unique traditional tea, named Awa tea, which are fermented with Lactobacillus pentosus and Lactobacillus plantarum. The present study was designed to investigate anti-obesity effects of the Awa tea and compare with those of non-fermented green tea. Obese male Wistar rats (19 weeks of age) were given by low energy diets containing 3% of Awa and green tea extracts, respectively, or without any tea extracts (control), for 4 weeks. Awa tea contained smaller amount of catechins than green tea, although they contained similar amounts of polyphenols. This finding indicates that there are distinct kinds of polyphenols from catechins. The diets containing Awa and green tea extracts further decreased whole body weight, fat tissue mass and plasma leptin level, compared with control diet. In addition, their diets increased the daily amount of lipid excreted to feces and total 24-h-energy consumption, compared with the control group. However, there is no significant difference in these anti-obesity effects between Awa tea and green tea. Our results indicate that Awa lactate-fermented tea as well as green tea similarly enhance the effect of diet restriction on obesity, at least in part, through the increase in fat energy consumption and the decrease in fat absorption in rats
Establishment of an Aseptic Culture System and Analysis of the Effective Growth Conditions for Eleocharis acicularis Ramets for Use in Phytoremediation
Eleocharis acicularis, an aquatic macrophyte of the Cyperaceae family, has been shown to accumulate multiple heavy metals and has great potential for use in the phytoremediation of contaminated soil and water. To investigate the mechanism of accumulation of heavy metals in E. acicularis while excluding biotic and abiotic environmental effects and to acquire homogenous and sufficient populations of E. acicularis, we established an aseptic culture system and analyzed the applicability of this species for phytoremediation. Young ramet bases and stolon tips of E. acicularis grown in the field were sterilized, cultured, and established in an aseptic culture system, and the effective growth conditions of isolated ramets were determined. Isolated ramets grew remarkably well in a medium of pH 4.8 to 5.7 with 0.25 mg/L kinetin as a plant hormone. Furthermore, capacity for the accumulation of heavy metals was examined using E. acicularis subcultured with or without Si. Aseptically cultured E. acicularis showed a sufficient capacity for Cs and Zn accumulation and exceeded the criteria for hyperaccumulator plants in accumulating Pb, Cd, and In regardless of the addition or not of Si during its subculture. The aseptic culture of E. acicularis enhances its capacity for the accumulation of heavy metals and its applicability for phytoremediation
HDAC8 mutations in Cornelia de Lange syndrome affect the cohesin acetylation cycle.
International audienceCornelia de Lange syndrome (CdLS) is a dominantly inherited congenital malformation disorder, caused by mutations in the cohesin-loading protein NIPBL for nearly 60% of individuals with classical CdLS, and by mutations in the core cohesin components SMC1A (~5%) and SMC3 (<1%) for a smaller fraction of probands. In humans, the multisubunit complex cohesin is made up of SMC1, SMC3, RAD21 and a STAG protein. These form a ring structure that is proposed to encircle sister chromatids to mediate sister chromatid cohesion and also has key roles in gene regulation. SMC3 is acetylated during S-phase to establish cohesiveness of chromatin-loaded cohesin, and in yeast, the class I histone deacetylase Hos1 deacetylates SMC3 during anaphase. Here we identify HDAC8 as the vertebrate SMC3 deacetylase, as well as loss-of-function HDAC8 mutations in six CdLS probands. Loss of HDAC8 activity results in increased SMC3 acetylation and inefficient dissolution of the 'used' cohesin complex released from chromatin in both prophase and anaphase. SMC3 with retained acetylation is loaded onto chromatin, and chromatin immunoprecipitation sequencing analysis demonstrates decreased occupancy of cohesin localization sites that results in a consistent pattern of altered transcription seen in CdLS cell lines with either NIPBL or HDAC8 mutations