282 research outputs found

    Observation of "Partial Coherence" in an Aharonov-Bohm Interferometer with a Quantum Dot

    Full text link
    We report experiments on the interference through spin states of electrons in a quantum dot (QD) embedded in an Aharonov-Bohm (AB) interferometer. We have picked up a spin-pair state, for which the environmental conditions are ideally similar and have traced the AB amplitude in the range of the gate voltage that covers the pair. The behavior of the asymmetry in the amplitude around the two Coulomb peaks agrees with the theoretical prediction that relates a spin-flip process in a QD to the quantum dephasing of electrons. These results consist evidence of "partial coherence" due to an entanglement of spins in the QD and the interferometer.Comment: 4 pages, 3 figures, RevTe

    Electrical coherent control of nuclear spins in a breakdown regime of quantum Hall effect

    Full text link
    Using a conventional Hall-bar geometry with a micro-metal strip on top of the surface, we demonstrate an electrical coherent control of nuclear spins in an AlGaAs/GaAs semiconductor heterostructure. A breakdown of integer quantum Hall (QH) effect is utilized to dynamically polarize nuclear spins. By applying a pulse rf magnetic field with the metal strip, the quantum state of the nuclear spins shows Rabi oscillations, which is detected by measuring longitudinal voltage of the QH conductor.Comment: 3 pages, 4 figure

    Dynamic nuclear polarization induced by breakdown of fractional quantum Hall effect

    Full text link
    We study dynamic nuclear polarization (DNP) induced by breakdown of the fractional quantum Hall (FQH) effect. We find that voltage-current characteristics depend on current sweep rates at the quantum Hall states of Landau level filling factors ν\nu = 1, 2/3, and 1/3. The sweep rate dependence is attributed to DNP occurring in the breakdown regime of FQH states. Results of a pump and probe experiment show that the polarities of the DNP induced in the breakdown regimes of the FQH states is opposite to that of the DNP induced in the breakdown regimes of odd-integer quantum Hall states.Comment: 4 pages, 4 figure

    Breakdown of `phase rigidity' and variations of the Fano effect in closed Aharonov-Bohm interferometers

    Full text link
    Although the conductance of a closed Aharonov-Bohm interferometer, with a quantum dot on one branch, obeys the Onsager symmetry under magnetic field reversal, it needs not be a periodic function of this field: the conductance maxima move with both the field and the gate voltage on the dot, in an apparent breakdown of `phase rigidity'. These experimental findings are explained theoretically as resulting from multiple electronic paths around the interferometer ring. Data containing several Coulomb blockade peaks, whose shapes change with the magnetic flux, are fitted to a simple model, in which each resonant level on the dot couples to a different path around the ring

    Spin filtering by a periodic nanospintronic devices

    Full text link
    For a linear chain of diamond-like elements, we show that the Rashba spin-orbit interaction (which can be tuned by a perpendicular gate voltage) and the Aharonov-Bohm flux (due to a perpendicular magnetic field) can combine to select only one propagating ballistic mode, for which the electronic spins are fully polarized along a direction that can be tuned by the electric and magnetic fields and by the electron energy. All the other modes are evanescent. For a wide range of parameters, this chain can serve as a spin filter.Comment: Published versio

    Ultrahigh-Field Hole Cyclotron Resonance Absorption in InMnAs Films

    Full text link
    We have carried out an ultrahigh-field cyclotron resonance study of p-type In1-xMnxAs films, with Mn composition x ranging from 0% to 2.5%, grown on GaAs by low-temperature molecular-beam epitaxy. Pulsed magnetic fields up to 500 T were used to make cyclotron resonance observable in these low-mobility samples. The clear observation of hole cyclotron resonance is direct evidence of the existence of a large number of itinerant, effective-mass-type holes rather than localized d-like holes. It further suggests that the p-d exchange mechanism is more favorable than the double exchange mechanism in this narrow gap InAs-based dilute magnetic semiconductor. In addition to the fundamental heavy-hole and light-hole cyclotron resonance absorption appearing near the high-magnetic-field quantum limit, we observed many inter-Landau-level absorption bands whose transition probabilities are stronglydependent on the sense of circular polarization of the incident light.Comment: 8 pages, 10 Postscript figure

    Mesoscopic Fano Effect in a Quantum Dot Embedded in an Aharonov-Bohm Ring

    Full text link
    The Fano effect, which occurs through the quantum-mechanical cooperation between resonance and interference, can be observed in electron transport through a hybrid system of a quantum dot and an Aharonov-Bohm ring. While a clear correlation appears between the height of the Coulomb peak and the real asymmetric parameter qq for the corresponding Fano lineshape, we need to introduce a complex qq to describe the variation of the lineshape by the magnetic and electrostatic fields. The present analysis demonstrates that the Fano effect with complex asymmetric parameters provides a good probe to detect a quantum-mechanical phase of traversing electrons.Comment: REVTEX, 9 pages including 8 figure
    • …
    corecore