1,058 research outputs found

    Electrochemical synthesis and properties of CoO2, the x = 0 phase of the AxCoO2 systems (A = Li, Na)

    Full text link
    Single-phase bulk samples of the "exotic" CoO2, the x = 0 phase of the AxCoO2 systems (A = Li, Na), were successfully synthesized through electrochemical de-intercalation of Li from pristine LiCoO2 samples. The samples of pure CoO2 were found to be essentially oxygen stoichiometric and possess a hexagonal structure consisting of stacked triangular-lattice CoO2 layers only. The magnetism of CoO2 is featured with a temperature-independent susceptibility of the magnitude of 10-3 emu/mol Oe, being essentially identical to that of a Li-doped phase, Li0.12CoO2. It is most likely that the CoO2 phase is a Pauli-paramagnetic metal with itinerant electrons.Comment: 12 pages, 3 figure

    Field-induced commensurate long-range order in the Haldane-gap system NDMAZ

    Full text link
    High-field neutron diffraction studies of the new quantum-disordered S=1 linear-chain antiferromagnet Ni(C5_5H14_{14}N2_2)2_2N3_3(ClO4_4) (NDMAZ) are reported. At T=70 mK, at a critical field Hc=13.4H_c=13.4 T applied along the (013) direction, a phase transition to a commensurate N\'{e}el-like ordered state is observed. The results are discussed in the context of existing theories of quantum phase transitions in Haldane-gap antiferromagnets, and in comparions with previous studies of the related system Ni(C5_5H14_{14}N2_2)2_2N3_3(PF6_6)

    Electrochemical synthesis and properties of CoO[sub 2], the x=0 phase of the A[sub x]CoO[sub 2] systems (A=Li,Na)

    Get PDF
    Single-phase bulk samples of the “exotic” CoO2, the x=0 phase of the AxCoO2 systems (A=Li,Na), were successfully synthesized through electrochemical deintercalation of Li from pristine LiCoO2 samples. The samples of pure CoO2 were found to be essentially oxygen stoichiometric and possess a hexagonal structure consisting of stacked triangular-lattice CoO2 layers only. The magnetism of CoO2 is featured with a temperature-independent susceptibility of the magnitude of 10−3emu/molOe, being essentially identical to that of a Li-doped phase, Li0.12CoO2. It is most likely that the CoO2 phase is a Pauli-paramagnetic metal with itinerant electrons.Peer reviewe

    Electronic and Magnetic Properties of Febr2

    Full text link
    Electronic and magnetic (e-m) properties of FeBr2 have been surprisingly well described as originating from the Fe2+ ions and their fine electronic structure. The fine electronic structure have been evaluated taking into account the spin-orbit (s-o) coupling, crystal-field and inter-site spin-dependent interactions. The required magnetic doublet ground state with an excited singlet at D=2.8 meV results from the trigonal distortion. This effect of the trigonal distortion and a large magnetic moment of iron, of 4.4 mB, can be theoretically derived provided the s-o coupling is correctly taking into account. The obtained good agreement with experimental data indicates on extremaly strong correlations of the six 3d electrons in the Fe2+ ion yielding their full localization and the insulating state. These calculations show that for the meaningful analysis of e-m properties of FeBr2 the spin-orbit coupling is essentially important and that the orbital moment (0.74 mB) is largely unquenched (by the off-cubic trigonal distortion in the presence of the spin-orbit coupling).Comment: 11 pages in RevTex, 5 figure

    Eigenmode excitation of Alfven ion cyclotron instability

    Get PDF
    科研費報告書収録論文(課題番号:07558072・基盤研究(A)(2)・H7~H9/研究代表者:犬竹, 正明/高密度プラズマ源を用いた電磁流体工学試験装置の開発

    Large-Scale Numerical Evidence for Bose Condensation in the S=1 Antiferromagnetic Chain in a Strong Field

    Full text link
    Using the recently proposed density matrix renormalization group technique we show that the magnons in the S=1 antiferromagnetic Heisenberg chain effectively behaves as bosons that condense at a critical field h_c.Comment: 12 pages, REVTEX 3.0, 3 postscript figures appended, UBCTP-93-00

    A Sharp Peak of the Zero-Temperature Penetration Depth at Optimal Composition in BaFe2(As1-xPx)2

    Full text link
    In a superconductor, the ratio of the carrier density, nn, to their effective mass, mm^*, is a fundamental property directly reflecting the length scale of the superfluid flow, the London penetration depth, λL\lambda_L. In two dimensional systems, this ratio n/mn/m^* (1/λL2\sim 1/\lambda_L^2) determines the effective Fermi temperature, TFT_F. We report a sharp peak in the xx-dependence of λL\lambda_L at zero temperature in clean samples of BaFe2_2(As1x_{1-x}Px_x)2_2 at the optimum composition x=0.30x = 0.30, where the superconducting transition temperature TcT_c reaches a maximum of 30\,K. This structure may arise from quantum fluctuations associated with a quantum critical point (QCP). The ratio of Tc/TFT_c/T_F at x=0.30x = 0.30 is enhanced, implying a possible crossover towards the Bose-Einstein condensate limit driven by quantum criticality.Comment: Main text (5 pages, 4 figures) + Supplementary Materials (5 pages, 5 figures). Published on June 22, 201

    Anomalous superfluid density in quantum critical superconductors

    Get PDF
    When a second-order magnetic phase transition is tuned to zero temperature by a non-thermal parameter, quantum fluctuations are critically enhanced, often leading to the emergence of unconventional superconductivity. In these `quantum critical' superconductors it has been widely reported that the normal-state properties above the superconducting transition temperature TcT_c often exhibit anomalous non-Fermi liquid behaviors and enhanced electron correlations. However, the effect of these strong critical fluctuations on the superconducting condensate below TcT_c is less well established. Here we report measurements of the magnetic penetration depth in heavy-fermion, iron-pnictide, and organic superconductors located close to antiferromagnetic quantum critical points showing that the superfluid density in these nodal superconductors universally exhibit, unlike the expected TT-linear dependence, an anomalous 3/2 power-law temperature dependence over a wide temperature range. We propose that this non-integer power-law can be explained if a strong renormalization of effective Fermi velocity due to quantum fluctuations occurs only for momenta k\bm{k} close to the nodes in the superconducting energy gap Δ(k)\Delta(\bm{k}). We suggest that such `nodal criticality' may have an impact on low-energy properties of quantum critical superconductors.Comment: Main text (5 pages, 3 figures) + Supporting Information (3 pages, 4 figures). Published in PNAS Early Edition on February 12, 201

    Evidence for superconducting gap nodes in the zone-centered hole bands of KFe2As2 from magnetic penetration-depth measurements

    Full text link
    Among the iron-based pnictide superconductors the material KFe2_2As2_2 is unusual in that its Fermi surface does not consist of quasi-nested electron and hole pockets. Here we report measurements of the temperature dependent London penetration depth of very clean crystals of this compound with residual resistivity ratio >1200>1200. We show that the superfluid density at low temperatures exhibits a strong linear-in-temperature dependence which implies that there are line nodes in the energy gap on the large zone-centered hole sheets. The results indicate that KFe2_2As2_2 is an unconventional superconductor with strong electron correlations.Comment: 6 pages, 6 figures, 1 table. Extended version to be published in Phys. Rev.
    corecore