1,374 research outputs found

    Half-ordered state in the anisotropic Haldane-gap antiferromagnet NDMAP

    Full text link
    Neutron diffraction experiments performed on the Haldane gap material NDMAP in high magnetic fields applied at an angle to the principal anisotropy axes reveal two consecutive field-induced phase transitions. The low-field phase is the gapped Haldane state, while at high fields the system exhibits 3-dimensional long-range Neel order. In a peculiar phase found at intermediate fields only half of all the spin chains participate in the long-range ordering, while the other half remains disordered and gapped.Comment: 4 pages, 2 figures, submitted to Phys. Rev.

    Field induced long-range-ordering in an S=1 quasi-one-dimensional Heisenberg antiferromagnet

    Full text link
    We have measured the heat capacity and magnetization of the spin one one-dimensional Heisenberg antiferromagnet NDMAP and constructed a magnetic field versus temperature phase diagram. We found a field induced long-range magnetic ordering. We have been successful in explaining the phase diagram theoretically.Comment: 6 pages, 18 figure

    Field-induced commensurate long-range order in the Haldane-gap system NDMAZ

    Full text link
    High-field neutron diffraction studies of the new quantum-disordered S=1 linear-chain antiferromagnet Ni(C5_5H14_{14}N2_2)2_2N3_3(ClO4_4) (NDMAZ) are reported. At T=70 mK, at a critical field Hc=13.4H_c=13.4 T applied along the (013) direction, a phase transition to a commensurate N\'{e}el-like ordered state is observed. The results are discussed in the context of existing theories of quantum phase transitions in Haldane-gap antiferromagnets, and in comparions with previous studies of the related system Ni(C5_5H14_{14}N2_2)2_2N3_3(PF6_6)

    Nanoscale Defect Formation on InP(111) Surfaces after MeV Sb Implantation

    Full text link
    We have studied the surface modifications as well as the surface roughness of the InP(111) surfaces after 1.5 MeV Sb ion implantations. Scanning Probe Microscope (SPM) has been utilized to investigate the ion implanted InP(111) surfaces. We observe the formation of nanoscale defect structures on the InP surface. The density, height and size of the nanostructures have been investigated here as a function of ion fluence. The rms surface roughness, of the ion implanted InP surfaces, demonstrates two varied behaviors as a function of Sb ion fluence. Initially, the roughness increases with increasing fluence. However, after a critical fluence the roughness decreases with increasing fluence. We have further applied the technique of Raman scattering to investigate the implantation induced modifications and disorder in InP. Raman Scattering results demonstrate that at the critical fluence, where the decrease in surface roughness occurs, InP lattice becomes amorphous.Comment: 18 pages, 9 figure

    Analytical Tachyonic Lump Solutions in Open Superstring Field Theory

    Full text link
    We construct a classical solution in the GSO(-) sector in the framework of a Wess-Zumino-Witten-like open superstring field theory on a non-BPS D-brane. We use an su(2) supercurrent, which is obtained by compactifying a direction to a circle with the critical radius, in order to get analytical tachyonic lump solutions to the equation of motion. By investigating the action expanded around a solution we find that it represents a deformation from a non-BPS D-brane to a D-brane-anti-D-brane system at the critical value of a parameter which is contained in classical solutions. Although such a process was discussed in terms of boundary conformal field theory before, our study is based on open superstring field theory including interaction terms.Comment: 17 pages, references adde

    Massive triplet excitations in a magnetized anisotropic Haldane spin chain

    Full text link
    Inelastic neutron scattering experiments on the Haldane-gap quantum antiferromagnet \nd are performed at mK temperatures in magnetic fields of almost twice the critical field HcH_c applied perpendicular to the spin cahins. Above HcH_c a re-opening of the spin gap is clearly observed. In the high-field N\'eel-ordered state the spectrum is dominated by three distinct long-lived excitation branches. Several field-theoretical models are tested in a quantitative comparison with the experimental data.Comment: 4 pages, 3 figure

    Anomalous superfluid density in quantum critical superconductors

    Get PDF
    When a second-order magnetic phase transition is tuned to zero temperature by a non-thermal parameter, quantum fluctuations are critically enhanced, often leading to the emergence of unconventional superconductivity. In these `quantum critical' superconductors it has been widely reported that the normal-state properties above the superconducting transition temperature TcT_c often exhibit anomalous non-Fermi liquid behaviors and enhanced electron correlations. However, the effect of these strong critical fluctuations on the superconducting condensate below TcT_c is less well established. Here we report measurements of the magnetic penetration depth in heavy-fermion, iron-pnictide, and organic superconductors located close to antiferromagnetic quantum critical points showing that the superfluid density in these nodal superconductors universally exhibit, unlike the expected TT-linear dependence, an anomalous 3/2 power-law temperature dependence over a wide temperature range. We propose that this non-integer power-law can be explained if a strong renormalization of effective Fermi velocity due to quantum fluctuations occurs only for momenta k\bm{k} close to the nodes in the superconducting energy gap Δ(k)\Delta(\bm{k}). We suggest that such `nodal criticality' may have an impact on low-energy properties of quantum critical superconductors.Comment: Main text (5 pages, 3 figures) + Supporting Information (3 pages, 4 figures). Published in PNAS Early Edition on February 12, 201

    Dichotomous Scoring of TDP-43 Proteinopathy from Specific Brain Regions in 27 Academic Research Centers: Associations with Alzheimer\u27s Disease and Cerebrovascular Disease Pathologies

    Get PDF
    TAR-DNA binding protein 43 (TDP-43) proteinopathy is a common brain pathology in elderly persons, but much remains to be learned about this high-morbidity condition. Published stage-based systems for operationalizing disease severity rely on the involvement (presence/absence) of pathology in specific anatomic regions. To examine the comorbidities associated with TDP-43 pathology in aged individuals, we studied data from the National Alzheimer’s Coordinating Center (NACC) Neuropathology Data Set. Data were analyzed from 929 included subjects with available TDP-43 pathology information, sourced from 27 different American Alzheimer’s Disease Centers (ADCs). Cases with relatively unusual diseases including autopsy-proven frontotemporal lobar degeneration (FTLD-TDP or FTLD-tau) were excluded from the study. Our data provide new information about pathologic features that are and are not associated with TDP-43 pathologies in different brain areas—spinal cord, amygdala, hippocampus, entorhinal cortex/inferior temporal cortex, and frontal neocortex. Different research centers used cite-specific methods including different TDP-43 antibodies. TDP-43 pathology in at least one brain region was common (31.4%) but the pathology was rarely observed in spinal cord (1.8%) and also unusual in frontal cortex (5.3%). As expected, TDP-43 pathology was positively associated with comorbid hippocampal sclerosis pathology and with severe AD pathology. TDP-43 pathology was also associated with comorbid moderate-to-severe brain arteriolosclerosis. The association between TDP-43 pathology and brain arteriolosclerosis appears relatively specific since there was no detected association between TDP-43 pathology and microinfarcts, lacunar infarcts, large infarcts, cerebral amyloid angiopathy (CAA), or circle of Willis atherosclerosis. Together, these observations provide support for the hypothesis that many aged brains are affected by a TDP-43 proteinopathy that is more likely to be seen in brains with AD pathology, arteriolosclerosis pathology, or both
    corecore