821 research outputs found
Half-ordered state in the anisotropic Haldane-gap antiferromagnet NDMAP
Neutron diffraction experiments performed on the Haldane gap material NDMAP
in high magnetic fields applied at an angle to the principal anisotropy axes
reveal two consecutive field-induced phase transitions. The low-field phase is
the gapped Haldane state, while at high fields the system exhibits
3-dimensional long-range Neel order. In a peculiar phase found at intermediate
fields only half of all the spin chains participate in the long-range ordering,
while the other half remains disordered and gapped.Comment: 4 pages, 2 figures, submitted to Phys. Rev.
Algebras for parameterised monads
Parameterised monads have the same relationship to adjunctions with parameters as monads do to adjunctions. In this paper, we investigate algebras for parameterised monads. We identify the Eilenberg-Moore category of algebras for parameterised monads and prove a generalisation of Beck’s theorem characterising this category. We demonstrate an application of this theory to the semantics of type and effect systems
Molecular Design of Polymer Coatings Capable of Photo-Triggered Stress Relaxation via Dynamic Covalent Bond Exchange
Polymer coatings are frequently used to modify surface properties of inorganic substrates. However, the disparity in physical properties between polymer film and substrate often leads to residual stress development, which can be deleterious to the overall performance of coated materials. This work reports the molecular design of polymer films that dissipate stress upon irradiation with ultraviolet (UV) light. These polymers are synthesized by post-polymerization modification of the reactive polymer, poly(2-vinyl-4,4-dimethyl azlactone), to introduce dynamic crosslinks capable of light-initiated addition transfer fragmentation chemistry. Using a custom-built optical cantilever, contrasting film stress responses are observed between films containing dynamic bonds and analogous control films after UV light irradiation, which indicate successful stress relaxation. Further experiments demonstrate the complete relaxation of residual stress in dynamic films after an extended exposure, thereby generating a “stress-free” film. Films fabricated using this approach can be easily tailored to incorporate additional moieties to introduce desired surface properties for future application in a wide array of coatings
Universal Behavior of One-Dimensional Gapped Antiferromagnets in Staggered Magnetic Field
We study the properties of one-dimensional gapped Heisenberg antiferromagnets
in the presence of an arbitrary strong staggered magnetic field. For these
systems we predict a universal form for the staggered magnetization curve. This
function, as well as the effect the staggered field has on the energy gaps in
longitudinal and transversal excitation spectra, are determined from the
universal form of the effective potential in O(3)-symmetric 1+1--dimensional
field theory. Our theoretical findings are in excellent agreement with recent
neutron scattering data on R_2 Ba Ni O_5 (R = magnetic rare earth) linear-chain
mixed spin antiferromagnets.Comment: 4 pages, 2 figure
Absence of gap for infinite half--integer spin ladders with an odd number of legs
A proof is presented for the absence of gap for spin ladders with an
odd number of legs, in the infinite leg length limit. This result is relevant
to the current discussion of coupled one--dimensional spin systems, a physical
realization of which are vanadyl pyrophosphate, (VO)PO, and
stoichiometric Sr Cu O (with ).Comment: REVTeX, 8 page
Observation of a Transient Magnetization Plateau in a Quantum Antiferromagnet on the Kagome Lattice
The magnetization process of an S=1/2 antiferromagnet on the kagome lattice,
[Cu_3(titmb)_2(OCOCH_3)_6]H_2O {titmb= 1,3,5-tris(imidazol-1-ylmethyl)-2,4,6
trimethylbenzene} has been measured at very low temperatures in both pulsed and
steady fields. We have found a new dynamical behavior in the magnetization
process: a plateau at one third of the saturation magnetization appears in the
pulsed field experiments for intermediate sweep rates of the magnetic field and
disappears in the steady field experiments. A theoretical analysis using exact
diagonalization yields J_1=-19K and J_2=6K, for the nearest neighbor and second
nearest neighbor interactions, respectively. This set of exchange parameters
explains the very low saturation field and the absence of the plateau in the
thermodynamic equilibrium as well as the two-peak feature in the magnetic heat
capacity. Supported by numerical results we argue that a dynamical order by
disorder phenomenon could explain the transient appearance of the 1/3 plateau
in pulsed field experiments.Comment: 7 pages, 5 figure
Quasi-elastic neutron scattering in the high-field phase of a Haldane antiferromagnet
Inelastic neutron scattering experiments on the Haldane-gap quantum
antiferromagnet NDMAP are performed in magnetic fields below and above the
critical field Hc at which the gap closes. Quasi-elastic neutron scattering is
found for H>Hc indicating topological excitations in the high field phase.Comment: Added to discussion section. v2: Updated figure
Direct Observation of the Quantum Energy Gap in S = 1/2 Tetragonal Cuprate Antiferromagnets
Using an electron spin resonance spectrometer covering a wide range of
frequency and magnetic field, we have measured the low energy excitations of
the S=1/2 tetragonal antiferromagnets, Sr_{2}CuO_{2}Cl_{2} and
Sr_{2}Cu_{3}O_{4}Cl_{2}. Our observation of in-plane energy gaps of order 0.1
meV at zero external magnetic field are consistent with a spin wave
calculation, which includes several kinds of quantum fluctuations that remove
frustration. Results agree with other experiments and with exchange anisotropy
parameters determined from a five band Hubbard model.Comment: 4 pages, 3 figure
- …