342 research outputs found

    Trigger of twin‐fights in captive common marmosets

    Get PDF
    Common marmosets usually give birth to twins and form a social group consisting of a breeding couple and pairs of same-aged siblings. The twins may engage in the first agonistic fights between them, twin-fights (TFs), during adolescence. This study investigated the TFs based on records accumulated in our captive colony over 12 years to elucidate the proximate causations that trigger the TFs. We aimed to determine whether the TF onset mainly depended on internal events (such as the onset of puberty) as previously suggested or external events (such as the birth of the younger siblings and the behavioral change of the group members). Although both events usually occur simultaneously, the birth control method (i.e., manipulation of ovulation and interbirth-intervals by prostaglandin administration to females) could temporally separate these events. A comparison of the onset day and occurrence rate with or without the birth control procedure revealed that TFs were triggered by a combination of internal and external events, that is, external events were the predominant triggers of TF, under the influence of internal events. The timing of TF onset was significantly delayed when the birth of the younger siblings was delayed and the twins grew older under the birth-controlled condition,  suggesting that the birth of younger siblings and related behavioral changes of group members, as well as twins' developmental maturation, could trigger TF. Higher TF rates between same-sex twins were consistent with previous studies, reflecting the characteristics of same-sex directed aggression in callitrichines

    Fluoxetine-induced dematuration of hippocampal neurons and adult cortical neurogenesis in the common marmoset

    Get PDF
    The selective serotonin reuptake inhibitor fluoxetine (FLX) is widely used to treat depression and anxiety disorders. Chronic FLX treatment reportedly induces cellular responses in the brain, including increased adult hippocampal and cortical neurogenesis and reversal of neuron maturation in the hippocampus, amygdala, and cortex. However, because most previous studies have used rodent models, it remains unclear whether these FLX-induced changes occur in the primate brain. To evaluate the effects of FLX in the primate brain, we used immunohistological methods to assess neurogenesis and the expression of neuronal maturity markers following chronic FLX treatment (3 mg/kg/day for 4 weeks) in adult marmosets (n = 3 per group). We found increased expression of doublecortin and calretinin, markers of immature neurons, in the hippocampal dentate gyrus of FLX-treated marmosets. Further, FLX treatment reduced parvalbumin expression and the number of neurons with perineuronal nets, which indicate mature fast-spiking interneurons, in the hippocampus, but not in the amygdala or cerebral cortex. We also found that FLX treatment increased the generation of cortical interneurons; however, significant up-regulation of adult hippocampal neurogenesis was not observed in FLX-treated marmosets. These results suggest that dematuration of hippocampal neurons and increased cortical neurogenesis may play roles in FLX-induced effects and/or side effects. Our results are consistent with those of previous studies showing hippocampal dematuration and increased cortical neurogenesis in FLX-treated rodents. In contrast, FLX did not affect hippocampal neurogenesis or dematuration of interneurons in the amygdala and cerebral cortex

    Relationships between brain-derived neurotrophic factor, clinical symptoms, and decision-making in chronic schizophrenia: data from the Iowa Gambling Task

    Get PDF
    The levels of brain-derived neurotrophic factor (BDNF) are significantly decreased in patients with schizophrenia and correlate with impairments in cognitive function. However, no study has investigated the relationship between the serum BDNF levels and decision-making. We compared patients with schizophrenia to healthy controls with respect to their decision-making ability and serum BDNF levels. Eighty-six chronic schizophrenia patients and 51 healthy controls participated in this study. We controlled for gender, age, and estimated intelligence quotient (IQ), and we investigated the differences in decision-making performance on the Iowa Gambling Task (IGT) between the schizophrenia patient and control groups. We also compared the IGT scores, the serum BDNF levels, and the clinical symptoms between the groups. The IGT scores of the schizophrenia patients were lower than those of the controls. A negative correlation was detected between the mean net scores on the trials in the final two blocks and the serum BDNF levels(p<0.05). Multiple regression analysis revealed that depressive symptoms and the serum BDNF levels were significantly associated with the mean net scores on the trials in the final two blocks. Based on these results, impaired sensitivity to both reward and punishment is associated with depressive symptoms and reduced serum BDNF levels in chronic schizophrenia patients and may be related to their poor performance on the IGT

    Expression of progenitor cell/immature neuron markers does not present definitive evidence for adult neurogenesis

    Get PDF
    It is agreed upon that adult hippocampal neurogenesis (AHN) occurs in the dentate gyrus (DG) in rodents. However, the existence of AHN in humans, particularly in elderly individuals, remains to be determined. Recently, several studies reported that neural progenitor cells, neuroblasts, and immature neurons were detected in the hippocampus of elderly humans, based on the expressions of putative markers for these cells, claiming that this provides evidence of the persistence of AHN in humans. Herein, we briefly overview the phenomenon that we call “dematuration, ” in which mature neurons dedifferentiate to a pseudo-immature status and re-express the molecular markers of neural progenitor cells and immature neurons. Various conditions can easily induce dematuration, such as inflammation and hyper-excitation of neurons, and therefore, the markers for neural progenitor cells and immature neurons may not necessarily serve as markers for AHN. Thus, the aforementioned studies have not presented definitive evidence for the persistence of hippocampal neurogenesis throughout adult life in humans, and we would like to emphasize that those markers should be used cautiously when presented as evidence for AHN. Increasing AHN has been considered as a therapeutic target for Alzheimer’s disease (AD); however, given that immature neuronal markers can be re-expressed in mature adult neurons, independent of AHN, in various disease conditions including AD, strategies to increase the expression of these markers in the DG may be ineffective or may worsen the symptoms of such diseases

    Comparison of non-invasive, scalp-recorded auditory steady-state responses in humans, rhesus monkeys, and common marmosets

    Get PDF
    Auditory steady-state responses (ASSRs) are basic neural responses used to probe the ability of auditory circuits to produce synchronous activity to repetitive external stimulation. Reduced ASSR has been observed in patients with schizophrenia, especially at 40 Hz. Although ASSR is a translatable biomarker with a potential both in animal models and patients with schizophrenia, little is known about the features of ASSR in monkeys. Herein, we recorded the ASSR from humans, rhesus monkeys, and marmosets using the same method to directly compare the characteristics of ASSRs among the species. We used auditory trains on a wide range of frequencies to investigate the suitable frequency for ASSRs induction, because monkeys usually use stimulus frequency ranges different from humans for vocalization. We found that monkeys and marmosets also show auditory event-related potentials and phase-locking activity in gamma-frequency trains, although the optimal frequency with the best synchronization differed among these species. These results suggest that the ASSR could be a useful translational, cross-species biomarker to examine the generation of gamma-band synchronization in nonhuman primate models of schizophrenia

    Cerebral cortical processing time is elongated in human brain evolution

    Get PDF
    サルより遅いヒトの脳処理 --進化するほど脳の回転は遅くなる!?--. 京都大学プレスリリース. 2022-01-26.An increase in number of neurons is presumed to underlie the enhancement of cognitive abilities in brain evolution. The evolution of human cognition is then expected to have accompanied a prolongation of net neural-processing time due to the accumulation of processing time of individual neurons over an expanded number of neurons. Here, we confirmed this prediction and quantified the amount of prolongation in vivo, using noninvasive measurements of brain responses to sounds in unanesthetized human and nonhuman primates. Latencies of the N1 component of auditory-evoked potentials recorded from the scalp were approximately 40, 50, 60, and 100 ms for the common marmoset, rhesus monkey, chimpanzee, and human, respectively. Importantly, the prominent increase in human N1 latency could not be explained by the physical lengthening of the auditory pathway, and therefore reflected an extended dwell time for auditory cortical processing. A longer time window for auditory cortical processing is advantageous for analyzing time-varying acoustic stimuli, such as those important for speech perception. A novel hypothesis concerning human brain evolution then emerges: the increase in cortical neuronal number widened the timescale of sensory cortical processing, the benefits of which outweighed the disadvantage of slow cognition and reaction

    Ingestibility and Formulation Quality of Lansoprazole Orally Disintegrating Tablets

    Get PDF
    Objectives. We evaluated the ingestibility and formulation quality of one branded (formulation A) and five generic (formulations B, C, D, E, and F) lansoprazole orally disintegrating (OD) tablets. Methods. Ingestibility, including the oral disintegrating time, taste, mouth feeling, and palatability, was examined by sensory testing in healthy subjects. Formulation qualities, including salivary stability, gastric acid resistance, and intestinal dissolution behavior, were examined. Results and Discussion. The oral disintegration time of formulation F (52 s) was significantly longer than that of other formulations (32-37 s). More than 90% of subjects did not experience bitterness with formulations A, E, and F, whereas 50% of subjects felt rough and powdery sensations with formulations B, C, and D. More than 80% of subjects suggested that formulations A, E, and F had good palatability. Ingestibility was different between formulations. OD tablets consist of enteric granules containing lansoprazole, which is unstable in gastric acid. Enteric granules of each formulation were stable in artificial saliva and gastric juice. No differences were observed in dissolution behaviors among the formulations, indicating that the formulation quality of the formulations was almost equivalent. Conclusions. This study provides useful information for selecting branded or generic lansoprazole OD tablets for individualized treatments
    corecore