59 research outputs found

    Toward Assessing the Contribution of Arbuscular Mycorrhizal Symbiosis to Plant P Nutrition

    Get PDF
    Symposium paper Part 1: Function and management of soil microorganisms in agro-ecosystems with special reference to arbuscular mycorrhizal fung

    Molecular Mechanisms Underlying P Translocation and Metabolism in Arbuscular Mycorrhizal Fungi

    Get PDF
    Oral Session

    pH measurement of tubular vacuoles of an arbuscular mycorrhizal fungus, Gigaspora margarita

    Get PDF
    Arbuscular mycorrhizal fungi play an important role in phosphate supply to the host plants. The fungal hyphae contain tubular vacuoles where phosphate compounds such as polyphosphate are accumulated. Despite their importance for the phosphate storage, little is known about the physiological properties of the tubular vacuoles in arbuscular mycorrhizal fungi. As an indicator of the physiological state in vacuoles, we measured pH of tubular vacuoles in living hyphae of arbuscular mycorrhizal fungus Gigaspora margarita using ratio image analysis with pH-dependent fluorescent probe, 6-carboxyfluorescein. Fluorescent images of the fine tubular vacuoles were obtained using a laser scanning confocal microscope, which enabled calculation of vacuolar pH with high spatial resolution. The tubular vacuoles showed mean pH of 5.6 and a pH range of 5.1-6.3. These results suggest that the tubular vacuoles of arbuscular mycorrhizal fungi have a mildly acidic pH just like vacuoles of other fungal species including yeast and ectomycorrhizal fungi.ArticleMYCORRHIZA. 25(1):55-60 (2015)journal articl

    RNA-seq Transcriptional Profiling of an Arbuscular Mycorrhiza Provides Insights into Regulated and Coordinated Gene Expression in Lotus japonicus and Rhizophagus irregularis

    Get PDF
    Gene expression during arbuscular mycorrhizal development is highly orchestrated in both plants and arbuscular mycorrhizal fungi. To elucidate the gene expression profiles of the symbiotic association, we performed a digital gene expression analysis of Lotus japonicus and Rhizophagus irregularis using a HiSeq 2000 next-generation sequencer with a Cufflinks assembly and de novo transcriptome assembly. There were 3,641 genes differentially expressed during arbuscular mycorrhizal development in L. japonicus, approximately 80% of which were up-regulated. The up-regulated genes included secreted proteins, transporters, proteins involved in lipid and amino acid metabolism, ribosomes and histones. We also detected many genes that were differentially expressed in small-secreted peptides and transcription factors, which may be involved in signal transduction or transcription regulation during symbiosis. Coregulated genes between arbuscular mycorrhizal and root nodule symbiosis were not particularly abundant, but transcripts encoding for membrane traffic-related proteins, transporters and iron transport-related proteins were found to be highly co-up-regulated. In transcripts of arbuscular mycorrhizal fungi, expansion of cytochrome P450 was observed, which may contribute to various metabolic pathways required to accommodate roots and soil. The comprehensive gene expression data of both plants and arbuscular mycorrhizal fungi provide a powerful platform for investigating the functional and molecular mechanisms underlying arbuscular mycorrhizal symbiosis.ArticlePLANT AND CELL PHYSIOLOGY. 56(8):1490-1511 (2015)journal articl

    Isolation and Phenotypic Characterization of Lotus japonicus Mutants Specifically Defective in Arbuscular Mycorrhizal Formation

    Get PDF
    Several symbiotic mutants of legume plants defective in nodulation have also been shown to be mutants related to arbuscular mycorrhizal (AM) symbiosis. The origin of the AM symbiosis can be traced back to the early land plants. It has therefore been postulated that the older system of AM symbiosis was partially incorporated into the newer system of legume-rhizobium symbiosis. To unravel the genetic basis of the establishment of AM symbiosis, we screened about 34,000 plants derived from ethyl methanesulfonate (EMS)-mutagenized Lotus japonicus seeds by microscopic observation. As a result, three lines (ME778, ME966 and ME2329) were isolated as AM-specific mutants that exhibit clear AM-defective phenotypes but form normal effective root nodules with rhizobial infection. In the ME2329 mutant, AM fungi spread their hyphae into the intercellular space of the cortex and formed trunk hyphae in the cortical cells, but the development of fine branches in the arbuscules was arrested. The ME2329 mutant carried a nonsense mutation in the STR-homolog gene, implying that the line may be an str mutant in L. japonicus. On the ME778 and ME966 mutant roots, the entry of AM fungal hyphae was blocked between two adjacent epidermal cells. Occasionally, hyphal colonization accompanied by arbuscules was observed in the two mutants. The genes responsible for the ME778 and ME966 mutants were independently located on chromosome 2. These results suggest that the ME778 and ME966 lines are symbiotic mutants involved in the early stage of AM formation in L. japonicus.ArticlePLANT AND CELL PHYSIOLOGY. 55(5):928-941 (2014)journal articl

    Acidocalcisomes as Calcium- and Polyphosphate-Storage Compartments during Embryogenesis of the Insect Rhodnius prolixus Stahl

    Get PDF
    BACKGROUND: The yolk of insect eggs is a cellular domain specialized in the storage of reserve components for embryo development. The reserve macromolecules are stored in different organelles and their interactions with the embryo cells are mostly unknown. Acidocalcisomes are lysosome-related organelles characterized by their acidic nature, high electron density and large content of polyphosphate bound to several cations. In this work, we report the presence of acidocalcisome-like organelles in eggs of the insect vector Rhodnius prolixus. METHODOLOGY/PRINCIPAL FINDINGS: Characterization of the elemental composition of electron-dense vesicles by electron probe X-ray microanalysis revealed a composition similar to that previously described for acidocalcisomes. Following subcellular fractionation experiments, fractions enriched in acidocalcisomes were obtained and characterized. Immunofluorescence showed that polyphosphate polymers and the vacuolar proton translocating pyrophosphatase (V-H(+)-PPase, considered as a marker for acidocalcisomes) are found in the same vesicles and that these organelles are mainly localized in the egg cortex. Polyphosphate quantification showed that acidocalcisomes contain a significant amount of polyphosphate detected at day-0 eggs. Elemental analyses of the egg fractions showed that 24.5Β±0.65% of the egg calcium are also stored in such organelles. During embryogenesis, incubation of acidocalcisomes with acridine orange showed that these organelles are acidified at day-3 (coinciding with the period of yolk mobilization) and polyphosphate quantification showed that the levels of polyphosphate tend to decrease during early embryogenesis, being approximately 30% lower at day-3 compared to day-0 eggs. CONCLUSIONS: We found that acidocalcisomes are present in the eggs and are the main storage compartments of polyphosphate and calcium in the egg yolk. As such components have been shown to be involved in a series of dynamic events that may control embryo growth, results reveal the potential involvement of a novel organelle in the storage and mobilization of inorganic elements to the embryo cells

    Epithelial-mesenchymal transition-converted tumor cells can induce T-cell apoptosis through upregulation of programmed death ligand 1 expression in esophageal squamous cell carcinoma

    Get PDF
    Esophageal squamous cell carcinoma (ESCC) is an aggressive tumor, and it is urgently needed to develop novel therapeutic strategies including immunotherapy. In this study, we investigated the upregulation of the programmed death ligand 1 (PD-L1) due to epithelial-mesenchymal transition (EMT) in ESCC using an in vitro treatment system with the EMT inducer, glycogen synthase kinase (GSK)-3 inhibitor, and we also analyzed the correlation of EMT and PD-L1 expression in the clinical tumor samples of both tissue microarray (TMA) samples (n = 177) and whole tissue samples (n = 21). As a result, the inhibition of GSK-3Ξ² induces EMT phenotype with upregulated vimentin and downregulated E-cadherin as well as increased Snail and Zinc finger E box-binding homeobox (ZEB)-1 gene expression. Simultaneously, we showed that EMT-converted ESCC indicated the upregulation of PD-L1 at both protein (total and surface) and mRNA levels. Of importance, we showed that EMT-converted tumor cells have a capability to induce T-cell apoptosis to a greater extent in comparison to original epithelial type tumor cells. Furthermore, the immunohistochemical stains of ESCC showed that PD-L1 expression on tumor cells was positively correlated with EMT status in TMA samples (P = .0004) and whole tissue samples (P = .0029). In conclusion, our in vitro and in vivo study clearly demonstrated that PD-L1 expression was upregulated in mesenchymal type tumors of ESCC. These findings provide a strong rationale for the clinical use of anti-PD- 1/ anti-PD- L1 monoclonal antibodies for advanced ESCC patients

    Toward Assessing the Contribution of Arbuscular Mycorrhizal Symbiosis to Plant P Nutrition

    No full text

    Molecular Mechanisms Underlying P Translocation and Metabolism in Arbuscular Mycorrhizal Fungi

    No full text
    • …
    corecore