7 research outputs found

    A Thalamic Reticular Circuit for Head Direction Cell Tuning and Spatial Navigation.

    Get PDF
    As we navigate in space, external landmarks and internal information guide our movement. Circuit and synaptic mechanisms that integrate these cues with head-direction (HD) signals remain, however, unclear. We identify an excitatory synaptic projection from the presubiculum (PreS) and the multisensory-associative retrosplenial cortex (RSC) to the anterodorsal thalamic reticular nucleus (TRN), so far classically implied in gating sensory information flow. In vitro, projections to TRN involve AMPA/NMDA-type glutamate receptors that initiate TRN cell burst discharge and feedforward inhibition of anterior thalamic nuclei. In vivo, chemogenetic anterodorsal TRN inhibition modulates PreS/RSC-induced anterior thalamic firing dynamics, broadens the tuning of thalamic HD cells, and leads to preferential use of allo- over egocentric search strategies in the Morris water maze. TRN-dependent thalamic inhibition is thus an integral part of limbic navigational circuits wherein it coordinates external sensory and internal HD signals to regulate the choice of search strategies during spatial navigation

    A novel Smg6 mouse model reveals regulation of circadian period and daily CRY2 accumulation through the nonsense-mediated mRNA decay pathway

    Get PDF
    Nonsense-mediated mRNA decay (NMD) has been intensively studied as a surveillance pathway that degrades erroneous transcripts arising from mutations or RNA processing errors. While additional roles in controlling regular mRNA stability have emerged, possible functions in mammalian physiology in vivo have remained unclear. Here, we report a novel conditional mouse allele that allows converting the NMD effector nuclease SMG6 from wild-type to nuclease domain-mutant protein. We analyzed how NMD downregulation affects the function of the circadian clock, a system known to require rapid mRNA turnover. We uncover strong lengthening of free-running circadian periods for liver and fibroblast clocks, and direct NMD regulation of Cry2 mRNA, encoding a key transcriptional repressor within the rhythm-generating feedback loop. In the entrained livers of Smg6 mutant animals we reveal transcriptome-wide alterations in daily mRNA accumulation patterns, altogether expanding the known scope of NMD regulation in mammalian gene expression and physiology

    A conditional Smg6 mutant mouse model reveals circadian clock regulation through the nonsense-mediated mRNA decay pathway.

    Get PDF
    Nonsense-mediated messenger RNA (mRNA) decay (NMD) has been intensively studied as a surveillance pathway that degrades erroneous transcripts arising from mutations or RNA processing errors. While additional roles in physiological control of mRNA stability have emerged, possible functions in mammalian physiology in vivo remain unclear. Here, we created a conditional mouse allele that allows converting the NMD effector nuclease SMG6 from wild-type to nuclease domain-mutant protein. We find that NMD down-regulation affects the function of the circadian clock, a system known to require rapid mRNA turnover. Specifically, we uncover strong lengthening of free-running circadian periods for liver and fibroblast clocks and direct NMD regulation of Cry2 mRNA, encoding a key transcriptional repressor within the rhythm-generating feedback loop. Transcriptome-wide changes in daily mRNA accumulation patterns in the entrained liver, as well as an altered response to food entrainment, expand the known scope of NMD regulation in mammalian gene expression and physiology

    The sleep-wake distribution contributes to the peripheral rhythms in PERIOD-2.

    No full text
    In the mouse, Period-2 (Per2) expression in tissues peripheral to the suprachiasmatic nuclei (SCN) increases during sleep deprivation and at times of the day when animals are predominantly awake spontaneously, suggesting that the circadian sleep-wake distribution directly contributes to the daily rhythms in Per2. We found support for this hypothesis by recording sleep-wake state alongside PER2 bioluminescence in freely behaving mice, demonstrating that PER2 bioluminescence increases during spontaneous waking and decreases during sleep. The temporary reinstatement of PER2-bioluminescence rhythmicity in behaviorally arrhythmic SCN-lesioned mice submitted to daily recurring sleep deprivations substantiates our hypothesis. Mathematical modeling revealed that PER2 dynamics can be described by a damped harmonic oscillator driven by two forces: a sleep-wake-dependent force and an SCN-independent circadian force. Our work underscores the notion that in peripheral tissues the clock gene circuitry integrates sleep-wake information and could thereby contribute to behavioral adaptability to respond to homeostatic requirements

    Noradrenergic circuit control of non-REM sleep substates.

    No full text
    To understand what makes sleep vulnerable in disease, it is useful to look at how wake-promoting mechanisms affect healthy sleep. Wake-promoting neuronal activity is inhibited during non-rapid-eye-movement sleep (NREMS). However, sensory vigilance persists in NREMS in animals and humans, suggesting that wake promotion could remain functional. Here, we demonstrate that consolidated mouse NREMS is a brain state with recurrent fluctuations of the wake-promoting neurotransmitter noradrenaline on the ∼50-s timescale in the thalamus. These fluctuations occurred around mean noradrenaline levels greater than the ones of quiet wakefulness, while noradrenaline (NA) levels declined steeply in REMS. They coincided with a clustering of sleep spindle rhythms in the forebrain and with heart-rate variations, both of which are correlates of sensory arousability. We addressed the origins of these fluctuations by using closed-loop optogenetic locus coeruleus (LC) activation or inhibition timed to moments of low and high spindle activity during NREMS. We could suppress, lock, or entrain sleep-spindle clustering and heart-rate variations, suggesting that both fore- and hindbrain-projecting LC neurons show coordinated infraslow activity variations in natural NREMS. Noradrenergic modulation of thalamic, but not cortical, circuits was required for sleep-spindle clustering and involved NA release into primary sensory and reticular thalamic nuclei that activated both α1- and β-adrenergic receptors to cause slowly decaying membrane depolarizations. Noradrenergic signaling by LC constitutes a vigilance-promoting mechanism that renders mammalian NREMS vulnerable to disruption on the close-to-minute timescale through sustaining thalamocortical and autonomic sensory arousability. VIDEO ABSTRACT
    corecore