941 research outputs found

    Recoil-free spectroscopy of neutral Sr atoms in the Lamb-Dicke regime

    Get PDF
    We have demonstrated a recoil-free spectroscopy on the 1S0−3P1{}^1S_0-{}^3P_1 transition of strontium atoms confined in a one-dimensional optical lattice. By investigating the wavelength and polarization dependence of the ac Stark shift acting on the 1S0{}^1S_0 and 3P1(mJ=0){}^3P_1(m_J=0) states, we determined the {\it magic wavelength} where the Stark shifts for both states coincide. The Lamb-Dicke confinement provided by this Stark-free optical lattice enabled the measurement of the atomic spectrum free from Doppler as well as recoil shifts.Comment: 5pages, 4figure

    Spectroscopy of the 1S0−3P0^1S_0-{}^3P_0 Clock Transition of 87^{87}Sr in an Optical Lattice

    Full text link
    We report on the spectroscopy of the 5s21S0(F=9/2)→5s5p3P0(F=9/2)5s^2 {}^1S_0 (F=9/2) \to 5s5p {}^3P_0 (F=9/2) clock transition of 87Sr{}^{87}{\rm Sr} atoms (natural linewidth of 1 mHz) trapped in a one-dimensional optical lattice. Recoilless transitions with a linewidth of 0.7 kHz as well as the vibrational structure of the lattice potential were observed. By investigating the wavelength dependence of the carrier linewidth, we determined the magic wavelength, where the light shift in the clock transition vanishes, to be 813.5±0.9813.5\pm0.9 nm.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Lett. (09/May/2003

    Ultrastable Optical Clock with Neutral Atoms in an Engineered Light Shift Trap

    Full text link
    An ultrastable optical clock based on neutral atoms trapped in an optical lattice is proposed. Complete control over the light shift is achieved by employing the 5s21S0→5s5p3P05s^2 {}^1S_0 \to 5s5p {}^3P_0 transition of 87Sr{}^{87}{\rm Sr} atoms as a "clock transition". Calculations of ac multipole polarizabilities and dipole hyperpolarizabilities for the clock transition indicate that the contribution of the higher-order light shifts can be reduced to less than 1 mHz, allowing for a projected accuracy of better than 10−17 10^{-17}.Comment: 4 pages, 2 figures, accepted for publication in Phys. Rev. Let

    System of Complex Brownian Motions Associated with the O'Connell Process

    Full text link
    The O'Connell process is a softened version (a geometric lifting with a parameter a>0a>0) of the noncolliding Brownian motion such that neighboring particles can change the order of positions in one dimension within the characteristic length aa. This process is not determinantal. Under a special entrance law, however, Borodin and Corwin gave a Fredholm determinant expression for the expectation of an observable, which is a softening of an indicator of a particle position. We rewrite their integral kernel to a form similar to the correlation kernels of determinantal processes and show, if the number of particles is NN, the rank of the matrix of the Fredholm determinant is NN. Then we give a representation for the quantity by using an NN-particle system of complex Brownian motions (CBMs). The complex function, which gives the determinantal expression to the weight of CBM paths, is not entire, but in the combinatorial limit a→0a \to 0 it becomes an entire function providing conformal martingales and the CBM representation for the noncolliding Brownian motion is recovered.Comment: v3: AMS_LaTeX, 25 pages, no figure, minor corrections made for publication in J. Stat. Phy

    Colloquium: Physics of optical lattice clocks

    Full text link
    Recently invented and demonstrated, optical lattice clocks hold great promise for improving the precision of modern timekeeping. These clocks aim at the 10^-18 fractional accuracy, which translates into a clock that would neither lose or gain a fraction of a second over an estimated age of the Universe. In these clocks, millions of atoms are trapped and interrogated simultaneously, dramatically improving clock stability. Here we discuss the principles of operation of these clocks and, in particular, a novel concept of "magic" trapping of atoms in optical lattices. We also highlight recently proposed microwave lattice clocks and several applications that employ the optical lattice clocks as a platform for precision measurements and quantum information processing.Comment: 18 pages, 15 figure

    Lifetime measurement of the ^3P_2 metastable state of strontium atoms

    Full text link
    We have measured the lifetime of the 5s5p ^3P_2 metastable state of strontium atoms by magneto-optically trapping the decayed atoms to the ground state, which allowed sensitive detection of the rare decay events. We found that the blackbody radiation-induced decay was the dominant decay channel for the state at T = 300 K. The lifetime was determined to be 500^{+280}_{-130} s in the limit of zero temperature.Comment: 4 pages, 3 figures, submitted to Physical Review Letter

    Dynamical breakdown of the Ising spin-glass order under a magnetic field

    Full text link
    The dynamical magnetic properties of an Ising spin glass Fe0.55_{0.55}Mn0.45_{0.45}TiO3_3 are studied under various magnetic fields. Having determined the temperature and static field dependent relaxation time Ï„(T;H)\tau(T;H) from ac magnetization measurements under a dc bias field by a general method, we first demonstrate that these data provide evidence for a spin-glass (SG) phase transition only in zero field. We next argue that the data Ï„(T;H)\tau(T;H) of finite HH can be well interpreted by the droplet theory which predicts the absence of a SG phase transition in finite fields.Comment: 4 pages, 5 figure
    • …
    corecore